【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程是 (m為參數(shù)),直線l交曲線C1于A,B兩點;以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=4sin(θ﹣ ),點P(ρ, )在曲線C2上.
(1)求曲線C1的普通方程及點P的直角坐標;
(2)若直線l的傾斜角為 且經過點P,求|PA|+|PB|的值.
【答案】
(1)【解答】解:曲線C1的參數(shù)方程是 (m為參數(shù)),消去m可得x2﹣y2=4,
,ρ=2,∴點P的直角坐標為(1, );
(2)直線l的傾斜角為 且經過點P,參數(shù)方程為 ,
代入x2﹣y2=4,整理可得t2+8t+12=0,
設A、B對應的參數(shù)分別為t1、t2,則t1+t2=﹣8,t1t2=12,
∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=8
【解析】(1)消去參數(shù)m,即可得到的普通方程及p點直角坐標。
(2)直線l的傾斜角為 且經過點P,可得參數(shù)方程,代入x2﹣y2=4即可得|PA|+|PB|的值。
科目:高中數(shù)學 來源: 題型:
【題目】設公比不為1的等比數(shù)列{an}的前n項和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=(﹣1)nlog2an , 求數(shù)列{bn}的前2017項和T2017 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=a(x﹣1)2﹣xe2﹣x .
(Ⅰ)若曲線y=f(x)在點(2,f(2))處的切線與x軸平行,求a的值;
(Ⅱ)若 ,求f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓C: =1(a>b>0)的離心率為 ,A,B分別為橢圓C的左、右頂點,F(xiàn)為右焦點.直線y=6x與C的交點到y(tǒng)軸的距離為 ,過點B作x軸的垂線l,D為l 上異于點B的一點,以BD為直徑作圓E.
(1)求C 的方程;
(2)若直線AD與C的另一個交點為P,證明PF與圓E相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,若sinA=cos( ﹣B),a=3,c=2.
(1)求 的值;
(2)求tan( ﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某飲料生產企業(yè)為了占有更多的市場份額,擬在2017年度進行一系列促銷活動,經過市場調查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足 .已知2017年生產飲料的設備折舊,維修等固定費用為3萬元,每生產1萬件飲料需再投入32萬元的生產費用,若將每件飲料的售價定為其生產成本的150%與平均每件促銷費的一半之和,則該年生產的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產成本-促銷費,生產成本=固定費用+生產費用)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 中,曲線 的參數(shù)方程為 ( 為參數(shù)),在以 為極點, 軸的正半軸為極軸的極坐標系中,曲線 是圓心為 ,半徑為1的圓.
(1)求曲線 , 的直角坐標方程;
(2)設 為曲線 上的點, 為曲線 上的點,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com