【題目】已知A,B是焦距為的橢圓的上、下頂點(diǎn),P是橢圓上異于頂點(diǎn)的任意一點(diǎn),直線PA,PB的斜率之積為.
(1)求橢圓的方程;
(2)若C,D分別是橢圓的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,連接CM交橢圓于點(diǎn)E,試問(wèn):x軸上是否存在定點(diǎn)T,使得恒成立?若存在,求出點(diǎn)T坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)存在定點(diǎn)滿足題意
【解析】
(1)設(shè),代入橢圓方程可得,由,則,又由,進(jìn)而求得,從而求得橢圓方程;
(2)設(shè),法一:設(shè),由C,E,M共線得,則,由E在橢圓上,可得,代入中求解即可;
法二:設(shè)直線,則,聯(lián)立可得,則,代入中求解即可
(1)由題,,設(shè),
則,所以,
所以,
所以,
又,
所以,
所以橢圓的方程為
(2)存在,
設(shè)其坐標(biāo)為,由題,,
法一:設(shè),
由C,E,M共線得,即,所以,
由E在橢圓上,得,則,
因?yàn)?/span>,,
所以恒成立,
所以,即存在定點(diǎn)滿足題意
法二:設(shè)直線,其中,
令得,
聯(lián)立,
得,
故,所以,
所以,,
故恒成立,
所以,即存在定點(diǎn)滿足題意
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棱長(zhǎng)為1的正方體中,點(diǎn)、分別在線段、上運(yùn)動(dòng)(不包括線段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線段、的中點(diǎn),則由線與確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:函數(shù),數(shù)列對(duì),總有;
(1)求的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,且,求的取值范圍;
(3)若數(shù)列滿足:①為的子數(shù)列(即中每一項(xiàng)都是的項(xiàng),且按在中的順序排列);②為無(wú)窮等比數(shù)列,它的各項(xiàng)和為,這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列.寫出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與直線交于兩點(diǎn),不與軸垂直,圓.
(1)若點(diǎn)在橢圓上,點(diǎn)在圓上,求的最大值;
(2)若過(guò)線段的中點(diǎn)且垂直于的直線過(guò)點(diǎn),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面為正三角形,底面,,點(diǎn)在線段上,平面平面.
(1)請(qǐng)指出點(diǎn)的位置,并給出證明;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①經(jīng)過(guò)定點(diǎn)的直線都可以用方程表示;
②經(jīng)過(guò)定點(diǎn)的直線都可以用方程表示;
③不經(jīng)過(guò)原點(diǎn)的直線都可以用方程表示;
④經(jīng)過(guò)任意兩個(gè)不同的點(diǎn)、的直線都可以用方程表示,
其中真命題的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在處的切線交軸于點(diǎn).
(1)求的值;
(2)若對(duì)于內(nèi)的任意兩個(gè)數(shù),,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)與兩定點(diǎn)連線的斜率之積為,記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),曲線上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com