10.已知m∈R,p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦點(diǎn)在y軸上的橢圓;q:在復(fù)平面內(nèi),復(fù)數(shù)z=1+(m-3)i對(duì)應(yīng)的點(diǎn)在第四象限.若p∧q為真,則m的取值范圍是(2,3).

分析 利用橢圓的標(biāo)準(zhǔn)方程、復(fù)數(shù)的幾何意義、復(fù)合命題的真假的判定方法即可得出.

解答 解:p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦點(diǎn)在y軸上的橢圓,則m>2;
q:在復(fù)平面內(nèi),復(fù)數(shù)z=1+(m-3)i對(duì)應(yīng)的點(diǎn)在第四象限,∴m-3<0,解得m<3.
∵p∧q為真,∴p與q都為真命題.
∴2<m<3.
則m的取值范圍是(2,3).
故答案為:(2,3).

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程、復(fù)數(shù)的幾何意義、復(fù)合命題的真假的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=|sinx+$\frac{2}{3+sinx}$+t|(x,t∈R),對(duì)于任意的t∈R均存在x0使得f(x0)≥m,則m的最大值是(  )
A.$\frac{3}{4}$B.2$\sqrt{2}$-3C.2$\sqrt{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一個(gè)盒子里有3個(gè)分別標(biāo)有號(hào)碼為1,2,3的小球,每次取出一個(gè),記下它的標(biāo)號(hào)后再放回盒子中,共取
3次,則取得小球標(biāo)號(hào)最大值是3的取法有19種(結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知關(guān)于x的方程x2-2xcosA•cosB+(1-cosC)=0的兩根之和等于兩根之積,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.80-$\frac{20}{3}$πB.80+$\frac{20}{3}$πC.112+(2$\sqrt{29}$-4)πD.112+2$\sqrt{29}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),則f(x)=$\sqrt{x}$,則f(-4)等于( 。
A.-4B.-2C.2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則$\frac{3}{a}$+$\frac{4}$的最小值為49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.要從已編號(hào)(1~80)的80個(gè)同學(xué)中隨機(jī)抽取5人,調(diào)查其對(duì)學(xué)校某項(xiàng)新制度的意見,用系統(tǒng)抽樣方法確定所選取的5名學(xué)生的編號(hào)可能是( 。
A.5,15,25,35,45B.4,19,34,49,63C.7,23,39,55,71D.17,26,35,44,53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=cos4x-sin4x.下列結(jié)論正確的是( 。
A.函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù)B.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱
C.f(x)的最小正周期為$\frac{π}{2}$D.f(x)的值域?yàn)閇-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案