【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,

過A作AE垂直SB交SB于E點,作AH垂直SD交SD于H點,平面AEH交SC于K點,且AB=1,SA=2.

(1)證明E、H在以AK為直徑的圓上,且當點P是SA上任一點時,試求的最小值;

(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

(1)將側(cè)面繞側(cè)棱旋轉(zhuǎn)到與側(cè)面在同一平面內(nèi),當三點共線時,取最小值,這時,的最小值即線段的長,由此能求出結(jié)果;

(2)以A為原點,分別以AB、AD、AS所在的直線為x、y、z軸,建立空間直角坐標系,利用向量法能求出平面AEKH與平面ABCD所成銳二面角的余弦值.

(1)∵SA⊥底面ABCD,∴SA⊥BC,又AB⊥BC,

∴BC⊥平面SAB,又平面SAB,∴EA⊥BC,又∵AE⊥SB,∴AE⊥平面SBC ,

平面SBC,∴EA⊥EK, 同理 AH⊥KH,

∴E、H在以AK為直徑的圓上

現(xiàn)將側(cè)面SAB繞側(cè)棱SA旋轉(zhuǎn)到與側(cè)面SAD在同一平面內(nèi),如右圖示,

則當B、P、H三點共線時,取最小值,這時,

最小值即線段BH的長,設(shè),則,

中,,∴,

在三角形BAH中,有余弦定理得:

.

(2)以A為原點,分別以AB、AD、AS所在的直線為x、y、z軸,建立空間直角坐標系,則S(0,0,2),C(1,1,0),由(1)可得AE⊥SC,AH⊥SC,

∴SC⊥平面AEKH,為平面AEKH的一個法向量,

為平面ABCDF的一個法向量,設(shè)平面AEKH與平面ABCD所成的銳二面角的平面角為,則

平面AEKH與平面ABCD所成的銳二面角的余弦值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

A

合計

B

(1)根據(jù)已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明是否有的把握認為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設(shè)EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為建立健全國家學生體質(zhì)健康監(jiān)測評價機制,激勵學生積極參加身體鍛煉,教育部印發(fā)《國家學生體質(zhì)健康標準(2014年修訂)》,要求各學校每學期開展覆蓋本校各年級學生的《標準》測試工作,并根據(jù)學生每個學期總分評定等級.某校決定針對高中學生,每學期進行一次體質(zhì)健康測試,以下是小明同學六個學期體質(zhì)健康測試的總分情況.

學期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));

(2)在第六個學期測試中學校根據(jù) 《標準》,劃定540分以上為優(yōu)秀等級,已知小明所在的學習小組10個同學有6個被評定為優(yōu)秀,測試后同學們都知道了自己的總分但不知道別人的總分,小明隨機的給小組內(nèi)4個同學打電話詢問對方成績,優(yōu)秀的同學有人,求的分布列和期望.

參考公式: ;

相關(guān)系數(shù);

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域,值域是;定義域,值域是,其中實數(shù)滿足.

甲:如果任意,存在,使得,那么;

乙:如果存在,存在,使得,那么

丙:如果任意,任意,使得,那么;

丁:如果存在,任意,使得,那么;

請判斷上述四個命題中,假命題的個數(shù)是( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2006表示成5個正整數(shù)之和. 記. 問:

(1)取何值時,S取到最大值;

(2)進一步地,對任意,當取何值時,S取到最小值. 說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上為增函數(shù),求正實數(shù)的取值范圍;

(2)當時,求函數(shù)上的最值;

(3)當時,對大于1的任意正整數(shù),試比較的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的命題是( )

A.若存在,當時,有,則說函數(shù)在區(qū)間上是增函數(shù):

B.若存在,,),當時,有,則說函數(shù)在區(qū)間上是增函數(shù);

C.函數(shù)的定義域為,若對任意的,都有,則函數(shù)上一定是減函數(shù):

D.若對任意,當時,有,則說函數(shù)在區(qū)間上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當a=﹣ 時,求函數(shù)f(x)的極值;
(Ⅱ)當a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當x∈[1,+∞)時,若y=f(x)圖象上的點都在 所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案