精英家教網 > 高中數學 > 題目詳情

【題目】手機是人們必不可少的工具,極大地方便了人們的生活、工作、學習,現代社會的衣食住行都離不開它.某調查機構調查了某地區(qū)各品牌手機的線下銷售情況,將數據整理得如下表格:

品牌

其他

銷售比

每臺利潤(元)

100

80

85

1000

70

200

該地區(qū)某商場岀售各種品牌手機,以各品牌手機的銷售比作為各品牌手機的售出概率.

1)此商場有一個優(yōu)惠活動,每天抽取一個數字,且),規(guī)定若當天賣出的第臺手機恰好是當天賣出的第一臺手機時,則此手機可以打5.為保證每天該活動的中獎概率小于0.05,求的最小值;(,

2)此商場中一個手機專賣店只出售兩種品牌的手機,,品牌手機的售出概率之比為,若此專賣店一天中賣出3臺手機,其中手機臺,求的分布列及此專賣店當天所獲利潤的期望值.

【答案】(1)8(2)詳見解析

【解析】

1)解不等式即得的最小值;(2)由題得,再求出其對應的概率,即得的分布列及此專賣店當天所獲利潤的期望值.

解:(1)賣出一臺手機的概率,賣出一臺其他手機的概率

可得,即.

所以,故,即的最小值為8.

2)依題意可知手機售出的概率,手機售出的概率

由題得,

所以,,

,,

的分布列為

0

1

2

3

所以利潤的期望值為(元).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于函數,若,則稱的“不動點”,若,則稱的“穩(wěn)定點”,函數的“不動點”和“穩(wěn)定點”的集合分別記為,即,,那么,

(1)求函數的“穩(wěn)定點”;

(2)求證:

(3)若,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數滿足對于任意實數,都有,且當時,,

1)判斷的奇偶性并證明;

2)判斷的單調性,并求當時,的最大值及最小值;

3)解關于的不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)R上的奇函數,且當x>0,f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)畫出f(x)的圖像,并指出f(x)的單調區(qū)間

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數滿足不等式;

命題q:關于不等式對任意的恒成立.

1)若命題為真命題,求實數的取值范圍;

2)若“為假命題,為真命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,已知直線的極坐標方程是,圓的參數方程為為參數,).

(1)若直線與圓有公共點,求實數的取值范圍;

(2)當時,過點且與直線平行的直線交圓兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/千元

5

6

7

8

月薪/千元

4

6

8

10

獲得相應職位概率

0.4

0.3

0.2

0.1

獲得相應職位概率

0.4

0.3

0.2

0.1

(1)若兩人分別去應聘甲、乙兩家公司的C職位,記這兩人被甲、乙兩家公司的C職位錄用的人數和為,求的分布列;

(2)根據甲、乙兩家公司的聘用信息,如果你是該求職者,你會選擇哪一家公司?說明理由。

(3)若小王和小李分別被甲、乙兩家公司錄用,求小王月薪高于小李的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點,且經過點.

(1)求橢圓的方程;

(2)點是坐標原點,若直線與橢圓相切,過,垂足為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知橢圓的焦距為,以橢圓C的右頂點A為圓心的圓與直線相交于P,Q兩點,且

(I)求橢圓C的標準方程和圓A的方程。

(II)不過原點的直線l與橢圓C交于M,N兩點,已知直線OM,lON的斜率成等比數列,記以線段OM,線段ON為直徑的圓的面積分別為的值是否為定值?若是,求出此值:若不是,說明理由.

查看答案和解析>>

同步練習冊答案