分析 記直線l與兩平行線的交點(diǎn)為C、D,CD的中點(diǎn)為M,由兩直線交點(diǎn)坐標(biāo)、中點(diǎn)坐標(biāo)的求法得到點(diǎn)M的坐標(biāo),然后利用待定系數(shù)法求直線 l的方程.
解答 解:設(shè)直線 x-y-1=0與l1,l2的交點(diǎn)為 C(xC,yC),D(xD,yD),
則$\left\{\begin{array}{l}x+2y-1=0\\ x-y-1=0\end{array}\right.,⇒\left\{\begin{array}{l}{x_C}=1\\{y_C}=0\end{array}\right.$,
∴$C({1,0}).\left\{\begin{array}{l}x+2y-3=0\\ x-y-1=0\end{array}\right.,⇒\left\{\begin{array}{l}{x_D}=\frac{5}{3}\\{y_D}=\frac{2}{3}\end{array}\right.$,
∴$D({\frac{5}{3},\frac{2}{3}})$.
則C,D的中點(diǎn)M為$({\frac{4}{3},\frac{1}{3}})$.
又l過(guò)點(diǎn)(-1,1)由兩點(diǎn)式得l的方程為$\frac{{y-\frac{1}{3}}}{{1-\frac{1}{3}}}=\frac{{x-\frac{4}{3}}}{{-1-\frac{4}{3}}}$,即2x+7y-5=0為所求方程.
點(diǎn)評(píng) 本題考查了中點(diǎn)坐標(biāo)公式、直線的交點(diǎn),考查了計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=2n | B. | an=2n-1 | C. | an=2n-1 | D. | an=2n-1-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(3)>f(-2)>f(-π) | B. | f(-π)>f(-2)>f(3) | C. | f(-2)>f(3)>f(-π) | D. | f(-π)>f(3)>f(-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2a}$ | B. | 2a-b | C. | a2-b | D. | $\frac{a^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com