13.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),且|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,則m=1.

分析 利用平面向量坐標(biāo)運算法則先分別求出$\overrightarrow{a}+\overrightarrow$=(-1,2+m),$\overrightarrow{a}-\overrightarrow$=(3,2-m),再由|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,能求出結(jié)果.

解答 解:∵平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,m),
∴$\overrightarrow{a}+\overrightarrow$=(-1,2+m),$\overrightarrow{a}-\overrightarrow$=(3,2-m),
∵|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,
∴$\sqrt{1+(2+m)^{2}}$=$\sqrt{9+(2-m)^{2}}$,
解得m=1.
故答案為:1.

點評 本題考查實數(shù)值的求法及應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面向量坐標(biāo)運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|(x+2m)(x-m+4)<0},其中m∈R,集合B={x|$\frac{1-x}{x+2}$>0}.
(1)若B⊆A,求實數(shù)m的取值范圍;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖點G是三角形ABO的重心,PQ是過G的分別交OA,OB于P,Q的一條線段,且OP=mOA,OQ=nOB,(m,n∈R).求證$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將參數(shù)方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 為參數(shù),t 為常數(shù))化為普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若曲線C1:x2+y2-2x=0與曲線C2:mx2-xy+mx=0有三個不同的公共點,則實數(shù)m的取值范圍是( 。
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x.
(1)當(dāng)a=2時,f(x)≤k恒成立,求k的取值范圍;
(2)方程mf(x)=(1-$\frac{am}{2}$)x2有唯一實數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ,以極點為坐標(biāo)原點,極軸為軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求C1、C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于A、B兩點,且定點P的坐標(biāo)為(2,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$sin(\frac{π}{2}-α)=\frac{3}{5}$,則cos(π+α)的值為(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|0<x2<5},B={x|-3<x<2,x∈Z},則A∩B=( 。
A.{-2,-1,0,1}B.{-2,-1,1,2}C.{-2,-1,1}D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊答案