分析 由已知分析出函數(shù)f(x)=loga(x-1)在(1,+∞)上為凹函數(shù),可得結(jié)論.
解答 證明:∵函數(shù)f(x)=loga(1+x)(a>0且a≠1),x∈(-1,0)時(shí)有f(x)>0,
∴函數(shù)f(x)=logax,x∈(0,1)時(shí)有f(x)>0,
∴a∈(0,1)
∴函數(shù)f(x)=logax在(0,+∞)上為凹函數(shù);
∴函數(shù)f(x)=loga(x-1)在(1,+∞)上為凹函數(shù);
∴對(duì)任意x1>1,x2>1有$\frac{f({x}_{1}-1)+f({x}_{2}-1)}{2}$≥f($\frac{{x}_{1}+{x}_{2}-2}{2}$).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的凸凹性,正確理解函數(shù)的凸凹性是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | (0,1)∪(1,2) | C. | (0,1)和(1,2) | D. | (-∞,0)和(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4+4\sqrt{3}$ | B. | $5+4\sqrt{3}$ | C. | 12 | D. | $8+5\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com