【題目】設斜率為2的直線l,過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率,e的取值范圍是 ( )
A. e> B. e>
C. 1<e<
D. 1<e<
【答案】A
【解析】設右焦點為,所以直線
方程為
,代入雙曲線得:
,即
,因為直線與雙曲線左右分別相交,所以交點的橫坐標的乘積
,由韋達定理可得:
可得
,故選A.
【方法點晴】本題主要考查利用雙曲線的簡單性質求雙曲線的離心率取值范圍,屬于中檔題. 求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.求離心率范圍問題應先將 用有關的一些量表示出來,再利用其中的一些關系構造出關于
的不等式,從而求出
的范圍. 本題是利用韋達定理構造出關于
的不等式,最后解出
的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間
內(單位:
).若生產(chǎn)一件產(chǎn)品
的直徑位于區(qū)間
內該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品
中隨機抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計該廠生產(chǎn)一件
產(chǎn)品的平均利潤;
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內的產(chǎn)品中隨機抽取一個容量為5的樣本,從樣本中隨機抽取兩件產(chǎn)品進行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間
內的槪率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cosx(x∈(0,2π))有兩個不同的零點x1、x2 , 方程f(x)=m有兩個不同的實根x3、x4 . 若把這四個數(shù)按從小到大排列構成等差數(shù)列,則實數(shù)m的值為( )
A.
B.
C.
D.-
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(1,﹣1),B(4,0),C(2,2),平面區(qū)域D是所有滿足 =
+μ
(1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則4a+b的最小值為 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD
平面PAB
(1)求證:AB平面PCB
(2)求異面直線AP與BC所成角的大小
(3)求二面角C-PA-B 的大小的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項公式an;
(2)若a3 , a5分別是等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活.—媒體為調查市民對低頭族的認識,從某社區(qū)的500名市民中隨機抽取名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖:
(1)求出表中的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進行問卷調查, 再從這6名市民中隨機抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度
(單位:尾/立方米)的函數(shù).當
不超過
尾/立方米時,
的值為
千克/年;當
時,
是
的一次函數(shù),且當
時,
.
()當
時,求
關于
的函數(shù)的表達式.
()當養(yǎng)殖密度
為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com