【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為1030,2010(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.

1的值,并估計該廠生產(chǎn)一件產(chǎn)品的平均利潤;

2現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機抽取一個容量為5的樣本,從樣本中隨機抽取兩件產(chǎn)品進行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.

【答案】1 .2.

【解析】試題分析:(1)利用頻率分布直方圖中各矩形的面積和為1,可以得到.再計算出各組內(nèi)直徑的頻數(shù),就能計算出平均利潤.(2)中的問題是一個古典概型,它的基本事件的總數(shù)為,而至多有一件產(chǎn)品的直徑位于區(qū)間的事件的總數(shù)是7,從而所求概率為.

解析:

(1)由頻率分布直方圖得,所以直徑位于區(qū)間的頻數(shù)為,位于區(qū)間的頻數(shù)為位于區(qū)間的頻數(shù)為,位于區(qū)間的頻數(shù)為生產(chǎn)一件 產(chǎn)品的平均利潤為(元).

(2)由頻率分布直方圖得:直徑位于區(qū)間的頻率之比為,應從直徑位于區(qū)間的產(chǎn)品中抽取件產(chǎn)品,記為,從直徑位于區(qū)間的產(chǎn)品中抽取件產(chǎn)品,記為,從中隨機抽取兩件,所有可能的取法有種,兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的取法有種.∴所求概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從一批柚子中,隨機抽取100個,獲得其重量(單位:克)數(shù)據(jù)按照區(qū)間,,進行分組,得到概率分布直方圖,如圖所示.

(1)根據(jù)頻率分布直方圖計算抽取的100個柚子的重量眾數(shù)的估計值.

(2)用分層抽樣的方法從重量在的柚子中共抽取5個,其中重量在的有幾個?

(3)在(2)中抽出的5個柚子中,任取2人,求重量在的柚子最多有1個的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足4nSn=(n+1)2an(n∈N*).a(chǎn)1=1
(Ⅰ)求an;
(Ⅱ)設bn= ,數(shù)列{bn}的前n項和為Tn , 求證:Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點B沿棱柱側(cè)面(經(jīng)過棱AA1)到達頂點C1,與AA1的交點記為M.求:

(1)三棱柱側(cè)面展開圖的對角線長;

(2)從B經(jīng)M到C1的最短路線長及此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左、右焦點為, ,右頂點為上頂點為, 軸垂直,.

(1)求橢圓的方程;

(2)過點且不垂直與坐標軸的直線與橢圓交于 兩點,已知點,時,求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅱ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1 , C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的離心率為,已知但在橢圓上.

(1)求橢圓的方程;

(2)過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點,使得成立?如果存在,求出的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設斜率為2的直線l,過雙曲線的右焦 點,且與雙曲線的左、右兩支分別相交,則雙曲線離心率,e的取值范圍是

A. e B. e C. 1e D. 1e

查看答案和解析>>

同步練習冊答案