7.如圖為某幾何體的三視圖,則該幾何體的外接球的表面積為( 。
A.31πB.32πC.34πD.36π

分析 首先還原幾何體為底面邊長(zhǎng)為3的正方形,高為4是四棱錐,明確其外接球的半徑,然后計(jì)算表面積.

解答 解:由幾何體的三視圖得到幾何體是底面是邊長(zhǎng)為3的正方形,高為4是四棱錐,所以其外接球的直徑為$\sqrt{{3}^{2}+{3}^{2}+{4}^{2}}=\sqrt{34}$,
所以其表面積為34π;
故選C.

點(diǎn)評(píng) 本題考查了由幾何體的三視圖求幾何體的外接球表面積;關(guān)鍵是正確還原幾何體,找出其外接球的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在區(qū)間[-1,4]上隨機(jī)選取一個(gè)數(shù)X,則X≤1的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.矩形ABCD中,AB=1,BC=$\sqrt{3}$,將矩形沿對(duì)角線AC折起,使B點(diǎn)與P點(diǎn)重合,點(diǎn)P在平面ACD內(nèi)的射影M正好在AD上.
(Ⅰ)求證CD⊥PA;
(Ⅱ)求二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)?a,b∈R,定義運(yùn)算:a⊕b=a(a-b),a?b=b(a+b).則下列判斷正確的是④⑤.
①2016⊕2017=2017;②(x+1)⊕1=1?x;③f(x)=x?(x⊕1)的零點(diǎn)為1,$\frac{1}{2}$;
④a⊕b=b⊕a的必要不充分條件是a=b;⑤a?b=b?a的充要條件是a⊕b=b⊕a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知過(guò)點(diǎn)M($\frac{p}{2}$,0)的直線l與拋物線y2=2px(p>0)交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且滿(mǎn)足$\overrightarrow{OA}$•$\overrightarrow{OB}$=-3,則當(dāng)|AM|+4|BM|最小時(shí),|AB|=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某單位有200人,其中100人經(jīng)常參加體育鍛煉,其余人員視為不參加體育鍛煉.在一次體檢中,分別對(duì)經(jīng)常參加體育鍛煉的人員與不參加體育鍛煉的人員進(jìn)行檢查.按照身體健康與非健康人數(shù)統(tǒng)計(jì)后,構(gòu)成如下不完整的2×2列聯(lián)表:
健康非健康總計(jì)
經(jīng)常參加體育鍛煉p
不參加體育鍛煉q100
總計(jì)200
已知p是(1+2x)5展開(kāi)式中的第三項(xiàng)系數(shù),q是(1+2x)5展開(kāi)式中的第四項(xiàng)的二項(xiàng)式系數(shù).
(Ⅰ)求p與q的值;
(Ⅱ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“身體健康與經(jīng)常參加體育鍛煉有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)F1(-1,0)、F2(1,0)分別是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),一動(dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓(x-1)2+y2=1相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線C與橢圓E在第一象限的交點(diǎn)為P,且|PF2|=$\frac{5}{3}$.
(I)求曲線C與橢圓E的方程:
(Ⅱ)過(guò)點(diǎn)F2的直線l與橢圓E交于M,N兩點(diǎn).則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在.求出這個(gè)最大值及此時(shí)直線l的方程:若不存在.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若(1-2x)5=a0+a1x+…+a5x5(x∈R),則(a0+a2+a42-(a1+a3+a52=(  )
A.243B.-243C.81D.-81

查看答案和解析>>

同步練習(xí)冊(cè)答案