15.已知定義在R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,當(dāng)-1≤x<0時(shí),f(x)=-log${\;}_{\frac{1}{2}}$(-x),則方程f(x)-$\frac{1}{2}$=0在(0,6)內(nèi)的零點(diǎn)之和為(  )
A.8B.10C.12D.16

分析 推導(dǎo)出f(x)是以4為周期的周期函數(shù),由當(dāng)-1≤x<0時(shí),f(x)=-log${\;}_{\frac{1}{2}}$(-x),作出f(x)在(0,6)內(nèi)的圖象,數(shù)形結(jié)合能求出方程f(x)-$\frac{1}{2}$=0在(0,6)內(nèi)的零點(diǎn)之和.

解答 解:∵定義在R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,
∴f(x)=f(2-x)=-f(-x),即f(x)=-f(x+2)=f(x+4),
∴f(x)是以4為周期的周期函數(shù),
∵當(dāng)-1≤x<0時(shí),f(x)=-log${\;}_{\frac{1}{2}}$(-x),
∴f(x)在(0,6)內(nèi)的圖象如右圖:
∴結(jié)合圖象得:
方程f(x)-$\frac{1}{2}$=0在(0,6)內(nèi)的零點(diǎn)之和為:
x1+x2+x3+x4=2+10=12.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)在給定區(qū)間內(nèi)的零點(diǎn)之和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)和數(shù)形結(jié)合思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.從5件產(chǎn)品中任取2件,則不同取法的種數(shù)為10(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z.
(1)若b>2a,且f(sinx)(x∈R)的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(2)若對(duì)任意實(shí)數(shù)x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0使得f(x0)<2(x02+1)成立,求c的值;
(3)對(duì)于問(1)中的f(x),若對(duì)任意的m∈[-4,1],恒有f(x)≥2x2-mx-14,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知D點(diǎn)在⊙O直徑BC的延長(zhǎng)線上,DA切⊙O于A點(diǎn),DE是∠ADB的平分線,交AC于F點(diǎn),交AB于E點(diǎn).
(Ⅰ)求∠AEF的度數(shù);
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2.
(Ⅰ) 求證:AD1⊥B1C;
(Ⅱ) 求二面角A1-BD-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,⊙O的弦AB、CD相交于E,過點(diǎn)A作⊙O的切線與DC的延長(zhǎng)線交于點(diǎn)P.PA=6,AE=CD=EP=9.
(Ⅰ)求BE;
(Ⅱ)求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)在(0,2)上為減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(0,16]B.(-∞,16)C.(16,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD.
(Ⅰ)設(shè)E為線段PA的中點(diǎn),求證:BE∥平面PCD;
(Ⅱ)若PA=AD=DC,求平面PAB與平面PCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x3-3(k+1)x2+6kx+t,其中k,t為實(shí)數(shù).
(1)若函數(shù)f(x)在x=2處有極小值0,求k,t的值;
(2)已知k≥1且t=1-3k,如果存在x0∈(1,2],使得f'(x0)≤f(x0)成立,求實(shí)數(shù)t的取值范圍;
(3)記函數(shù)H(x)=[f(x)-t-2]•[$\frac{1}{6}$f'(x)-($\frac{1}{2}$k-1)x-k],若函數(shù)y=H(x)有5個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案