在同一平面直角坐標(biāo)系中,直線x﹣2y=2變成直線2x′﹣y′=4的伸縮變換是 則λ+μ= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 3.1逆變換與逆矩陣練習(xí)卷(解析版) 題型:選擇題
矩陣A=的逆矩陣為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:選擇題
(2010•黃浦區(qū)一模)已知關(guān)于x、y的二元一次線性方程組的增廣矩陣是,則該線性方程組有無窮多組解的充要條件是λ=( )
A.2 B.1或2 C.1 D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:填空題
(2014•江西模擬)定義=ad﹣bc,則++…+= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:選擇題
設(shè)=,n∈N*,則n的最小值為( )
A.3 B.6 C.9 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題
在同一坐標(biāo)系中,將曲線y=2sin3x變?yōu)榍y=sinx的伸縮變換是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題
已知函數(shù),若將其圖象繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)角后,所得圖象仍是某函數(shù)的圖象,則當(dāng)角θ取最大值θ0時(shí),tanθ0=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習(xí)卷(解析版) 題型:解答題
(2010•順義區(qū)一模)已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點(diǎn)P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題
如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長(zhǎng)線于點(diǎn)P,∠PCB=25°,則∠ADC為( )
A.105° B.115° C.120° D.125°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com