12.設(shè)常數(shù)a∈R,若函數(shù)f(x)=(a-x)|x|存在反函數(shù)f-1(x).
(1)求證:a=0,并求出反函數(shù)f-1(x);
(2)若關(guān)于x的不等式f-1(x2+m)<f(x)對一切x∈[-2,2]恒成立,求實數(shù)m的取值范圍.

分析 (1)根據(jù)f(x)存在反函數(shù)f-1(x),得出f(x)是定義域上的單調(diào)函數(shù),求出a的值;
(2)分類討論,分離參數(shù),即可求實數(shù)m的取值范圍.

解答 (1)證明:∵函數(shù)f(x)=(a-x)|x|=$\left\{\begin{array}{l}{-{x}^{2}+ax,x≥0}\\{{x}^{2}-ax,x<0}\end{array}\right.$,
且f(x)存在反函數(shù)f-1(x),
∴f(x)是定義域R的單調(diào)增函數(shù),
∴a=0,
(2)解:由(1)可得f(x)=-x|x|,
x≥0,f(x)=-x2,f-1(x)=$\sqrt{-x}$.x<0,f(x)=x2,f-1(x)=-$\sqrt{x}$,
-2≤x≤0,x2+m<0,不等式f-1(x2+m)<f(x)可化為$\sqrt{-{x}^{2}-m}$<x2,
∴m<-x2,且m>-x2-x4,
∴m<-4且m>0,不成立.
-2≤x≤0,x2+m>0,不等式f-1(x2+m)<f(x)可化為-$\sqrt{{x}^{2}+m}$<x2,
∴m>-x2,∴m>0;
0≤x≤2,x2+m<0,不等式f-1(x2+m)<f(x)可化為$\sqrt{-{x}^{2}-m}$<-x2,不成立.
0≤x≤2,x2+m>0,不等式f-1(x2+m)<f(x)可化為-$\sqrt{{x}^{2}+m}$<-x2,
∴m>-x2,且m>-x2+x4,
∴m>0且m>12,∴m>12.
綜上所述,m>12.

點評 本題考查反函數(shù),考查函數(shù)的單調(diào)性,考查恒成立問題,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ln(1+x)一$\frac{ax}{x+1}$(a>0).
(I)當f(x)在[0,+∞)內(nèi)單調(diào)遞增時,求實數(shù)a的取值范圍;
(Ⅱ)證明:${(\frac{2015}{2016})^{2016}}<\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知|$\overrightarrow{a}$|=5,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角θ=120°,則向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的正射影的數(shù)量為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若復數(shù)z滿足i•z=2i-z(i是虛數(shù)單位),則z=1+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在1時15分時,時針與分針所成的最小正角是$\frac{7π}{24}$弧度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.下列命題中,
①若lgx>lgy,則$\sqrt{x}$>$\sqrt{y}$;
②若|a|+|b|=|a+b|,則ab≥0;
③對△ABC,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$,則△ABC是等邊三角形;
④若a=1,則函數(shù)f(x)=(x-a)2在(1,+∞)上為增函數(shù).
其中否命題與逆否命題均為真命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若關(guān)于x的方程$\frac{1}{|x-1|+|2x+2|-4}$=a的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=e2π-x+sinx,x∈[π,2π],g(x)=${π}^{2x-e}+ln\frac{x}{e}$.x∈(0,e].
(1)若存在實數(shù)x0∈[π,2π]使得a≤f(x0)成立.對任意的實數(shù)x∈(0,e],b≥g(x)成立,求α的最大值u,b的最小值v;
(2)試比較u與v的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過點P($\sqrt{3}$,1)的直線l與圓x2+y2=1有公共點,則直線l的傾斜角的取值范圍是( 。
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.[0,$\frac{π}{6}$]D.[0,$\frac{π}{3}$]

查看答案和解析>>

同步練習冊答案