5.已知直三棱柱ABC-A1B1C1中,上底面是斜邊為AC的直角三角形,E、F分別是A1B、AC1的中點.
(1)求證:EF∥平面ABC;
(2)求證:平面AEF⊥平面AA1B1B.

分析 (1)證明EF∥BC,由此證明EF∥平面ABC;
(2)證明BB1⊥EF,且EF⊥AB,得出EF⊥平面AA1B1B,從而證明平面AEF⊥平面AA1B1B.

解答 證明:(1)連接A1C,直三棱柱ABC-A1B1C1中,四邊形AA1C1C是矩形,
所以點F在A1C上,且F為A1C的中點,
在△A1BC中,E、F分別是A1B、AC1的中點,
所以EF∥BC;
又EF?平面ABC,BC?平面ABC,
所以EF∥平面ABC;
(2)在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,
所以BB1⊥BC,
因為EF∥BC,
所以BB1⊥EF;
又底面是斜邊為AC的直角三角形,故AB⊥BC,
所以EF⊥AB,
又BB1∩AB=B,
所以EF⊥平面AA1B1B,
又EF?平面AEF,
所以平面AEF⊥平面AA1B1B.

點評 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了邏輯推理與空間想象能力,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρ=4cosθ,直線l過點M(1,0)且傾斜角α=$\frac{π}{6}$.
(1)將曲線C的極坐標方程化為直角坐標方程,寫出直線l的參數(shù)方程;
(2)若直線l與曲線C交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出如下四個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中正確的命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x+1≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實數(shù)m的取值范圍為( 。
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}滿足a3+a6=-$\frac{1}{3}$,a1a8=-$\frac{4}{3}$且a1>a8
(1)求數(shù)列{an}的通項公式;
(2)把數(shù)列{an}的第1項、第4項、第7項、…、第3n-2項、…分別作為數(shù)列{bn}的第1項、第2項、第3項、…、第n項、…,求數(shù)列{2${\;}^{_{n}}$}的所有項之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l:4x-3y-12=0與圓(x-2)2+(y-2)2=5交于A,B兩點,且與x軸、y軸分別交于C,D兩點,則( 。
A.2|CD|=5|AB|B.8|CD|=4|AB|C.5|CD|=2|AB|D.3|CD|=8|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1<2${\;}^{{x^2}-2x-3}}$<32},B={x|log2(x+3)<3}.
(1)求(∁RA)∩B;
(2)若(a,a+2)⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù) f(x)=$\frac{a}{3}$x3+$\frac{1}{2}$x2( a∈R,a≠0).
(1)求 f ( x )的單調(diào)區(qū)間;
(2)當(dāng) x∈[0,1]時,經(jīng)過函數(shù) f ( x )的圖象上任意一點的切線的傾斜角 θ 總在區(qū)間[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)內(nèi),試求實數(shù) a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列命題中,正確命題的序號為②.
①常數(shù)列既是等差數(shù)列,又是等比數(shù)列; 
②兩個變量的相關(guān)系數(shù)的絕對值越接近于1,它們的相關(guān)性越強.
③回歸直線方程=$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$至少經(jīng)過點(x1,y1),(x2,y2),…,(xn,yn)中的一個點.
④函數(shù)y=sin2x+$\frac{4}{si{n}^{2}x}$(x≠kπ)最小值是4.

查看答案和解析>>

同步練習(xí)冊答案