(本小題滿分16分)如圖①,分別是直角三角形的中點(diǎn),,沿將三角形折成如圖②所示的銳二面角,若為線段中點(diǎn).求證:
(1)直線平面;
(2)平面平面
      

(1)取中點(diǎn),連接,

 , ,所以 ,
所以四邊形為平行四邊形,所以,……4分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/c/qp8jo1.gif" style="vertical-align:middle;" />,
所以直線平面. ……………………………………………8分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/0/uebpn1.gif" style="vertical-align:middle;" />,分別的中點(diǎn),所以,所以…10分
同理,,
由(1)知,,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/f/tvfqw.gif" style="vertical-align:middle;" />, 所以, ……………………………14分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/27/b/pcc1s1.gif" style="vertical-align:middle;" />
所以平面平面.        ………………………………………16分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為空間四邊形的邊上的點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共l5分) 如圖,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA1

(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;      
(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,S,E,G分別是B1D1,BC,SC的中點(diǎn).
求證:直線EG∥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知點(diǎn)A(-3,1,4),則點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(  )

A.(-3,1,-4) B.(3,-1,-4) C.(-3,-1,-4) D.(-3,,1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓柱的高為2,底面半徑為3,AE、DF是圓柱的兩條母線,B、C是下底面圓周上的兩點(diǎn),已知四邊形ABCD是正方形.
(1)求證:;
(2)求正方形ABCD的邊長(zhǎng);
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G,F(xiàn)分別是線段CE,PB上的動(dòng)點(diǎn),且滿足=λ∈(0,1).

(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)

如圖,矩形中,,上的點(diǎn),且,
(Ⅰ)求證:平面
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案