8.已知圓C1:(x+a)2+(y-2)2=1與圓C2:(x-b)2+(y-2)2=4相外切,a,b為正實數(shù),則ab的最大值為 ( 。
A.2$\sqrt{3}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{2}$

分析 根據(jù)圓與圓之間的位置關系,兩圓外切則圓心距等于半徑之和,得到a+b=3.利用基本不等式即可求出ab的最大值.

解答 解:由已知,
圓C1:(x+a)2+(y-2)2=1的圓心為C1(-a,2),半徑r1=1.
圓C2:(x-b)2+(y-2)2=4的圓心為C2(b,2),半徑r2=2.
∵圓C1:(x+a)2+(y-2)2=1與圓C2:(x-b)2+(y-2)2=4相外切,
∴|C1C2|=r1+r2
即a+b=3.
由基本不等式,得ab≤$(\frac{a+b}{2})^{2}$=$\frac{9}{4}$.
故選:B.

點評 本題考查圓與圓之間的位置關系,基本不等式等知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=-sinx+ax(a為常數(shù)).
(1)若x∈[0,$\frac{π}{2}$]時函數(shù)f(x)單調(diào)遞增,求實數(shù)a的取值范圍;
(2)證明:當x∈[0,$\frac{π}{2}$]時,cosx≥-$\frac{1}{2}$x2+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.16B.$\frac{16}{3}$C.32D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設曲線y=3x-ln(x+1)在點(0,0)處的切線方程2x-y=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在三角形ABC中,已知A=60°,b=1,其面積為$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinc}$為( 。
A.$3\sqrt{3}$B.$\frac{{\sqrt{39}}}{2}$C.$\frac{{26\sqrt{3}}}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=sin2x,x∈R的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.要得到y(tǒng)=cos(2x-$\frac{π}{4}$)的圖象,只需將y=cos2x的圖象向右平移$\frac{π}{8}$個單位長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-1,2).
(1)求|$\overrightarrow{a}-\overrightarrow$|;
(2)若向量$\overrightarrow{a}-λ\overrightarrow$與2$\overrightarrow{a}+\overrightarrow$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.拋擲一枚均勻的硬幣4次,出現(xiàn)正面次數(shù)多余反面次數(shù)的概率是( 。
A.$\frac{7}{16}$B.$\frac{1}{8}$C.$\frac{1}{2}$D.$\frac{5}{16}$

查看答案和解析>>

同步練習冊答案