18.已知數(shù)列{an}(n∈N*)滿足:an=$\left\{\begin{array}{l}{n(n=1,2,3,4,5,6)}\\{-{a}_{n-3}(n≥7且n∈N^*)}\end{array}\right.$,則a2012=-5.

分析 由an=-an-3分析可知數(shù)列具有周期性,從而可判斷當(dāng)n≥10時(shí),an=-an-3=an-6,從而求得.

解答 解:當(dāng)n≥7時(shí),an=-an-3,
故當(dāng)n≥10時(shí),an=-an-3=an-6,
而2012=334×6+8,
故a2012=a8=-a5=-5,
故答案為:-5.

點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的判斷與遞推關(guān)系的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項(xiàng)和S10=100.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)求數(shù)列$\{{a_n}•{2^{a_n}}\}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.a(chǎn)1=1,an+1-an=4n+5,則an=2n2+3n-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的通項(xiàng)公式an=2n2+n.
(1)求a8,a10
(2)問(wèn):110是不是它的項(xiàng)?若是,為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}中,a1=1,an+1=3an+2n+1,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知|$\overrightarrow{a}$|=5,$\overrightarrow$=(3,2),$\overrightarrow{a}$⊥$\overrightarrow$,求$\overrightarrow{a}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中,真命題是(  )
A.?x0∈R,使e${\;}^{{x}_{0}}$<x0+1成立
B.a,b,c∈R,a3+b3+c3=3abc的充要條件是a=b=c
C.對(duì)?x∈R,使2x<x2成立
D.a,b∈R,a>b是a|a|>b|b|的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{14}{17}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥-2}\\{x-2y≥-2}\end{array}\right.$的解集記為D,若(a,b)∈D,則z=2a-3b的最大值是( 。
A.1B.4C.-1D.-4

查看答案和解析>>

同步練習(xí)冊(cè)答案