4.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=2i-$\frac{5}{2-i}$,則|z|=$\sqrt{5}$.

分析 直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解,然后求解復(fù)數(shù)的模.

解答 解:復(fù)數(shù)z=2i-$\frac{5}{2-i}$=2i-$\frac{5(2+i)}{(2-i)(2+i)}$=2i-2-i=-2+i.
|z|=$\sqrt{({-2)}^{2}+1}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,g(x)=x3,令h(x)=f(x)•g(x).
(1)討論函數(shù)f(x)的奇偶性;
(2)討論函數(shù)h(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,且z1•z2是實(shí)數(shù),
(1)求z1;
(2)求z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an},{bn}滿足:對(duì)于任意的正整數(shù)n,當(dāng)n≥2時(shí),an2+bnan-12=2n+1.
(1)若bn=(-1)n,求$\sum_{i=1}^{18}{a_i^2}$的值;
(2)若數(shù)列{an}的各項(xiàng)均為正數(shù),且a1=2,bn=-1.設(shè)Sn=$\frac{1}{4}\sum_{i=1}^n{{2^{a_i}}}$,Tn=$\sqrt{{a_1}{a_2}…{a_n}}$,試比較Sn與Tn的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則S2016=( 。
A.-$\frac{1}{2016}$B.$\frac{1}{2016}$C.-$\frac{1}{2017}$D.$\frac{1}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{x}{x+1}$+$\frac{x+1}{x+2}$+$\frac{x+2}{x+3}$+$\frac{x+3}{x+4}$,則f(-6+$\sqrt{5}$)+f(1-$\sqrt{5}$)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-3,4),則2$\overrightarrow{a}$-$\overrightarrow$=(  )
A.(7,-2)B.(6,-2)C.(-1,6)D.(-2,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知變量x,y滿足$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,則3-2$\sqrt{2}$是此數(shù)列的第8項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案