分析 (1)連結PF,由CD⊥AD,CD⊥PD得CD⊥平面PAD,故CD⊥PF,又PF⊥AD,故PF⊥平面ABCD,于是平面CEF⊥平面ABCD;
(2)由E是PC的中點得VP-BDE=$\frac{1}{2}$VP-BDC.
解答 解:(1)連結PF,
∵△PAD是正三角形,∴PF⊥AD.
∵AD⊥CD,PD⊥CD,PD?平面PAD,AD?平面PAD,AD∩PD=D,
∴CD⊥平面PAD,∵PF?平面PAD,
∴CD⊥PF.
又∵AD?平面ABCD,CD?平面ABCD,AD∩CD=D,
∴PF⊥平面ABCD,∵PF?平面CEF,
∴平面CEF⊥平面ABCD.
(2)∵△PAD是邊長為2的正三角形,四邊形ABCD是邊長為2的正方形,
∴PF=$\sqrt{3}$,BC=CD=2,
∴VP-BCD=$\frac{1}{3}{S}_{△BCD}•PF$=$\frac{1}{3}×\frac{1}{2}×{2}^{2}×\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
∵E是PC的中點,
∴VP-BDE=$\frac{1}{2}$VP-BDC=$\frac{\sqrt{3}}{3}$.
點評 本題考查了線面垂直,面面垂直的判定,棱錐的體積計算,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com