【題目】若函數(shù)在區(qū)間上的值域?yàn)?/span>,則稱區(qū)間為函數(shù)的一個(gè)“倒值區(qū)間”.定義在上的奇函數(shù),當(dāng)時(shí),

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)上的“倒值區(qū)間”;

(Ⅲ)記函數(shù)在整個(gè)定義域內(nèi)的“倒值區(qū)間”為,設(shè),則是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個(gè)不同的交點(diǎn)?若存在,求出的值;若不存在,試說(shuō)明理由.

【答案】(Ⅰ); (Ⅱ);(Ⅲ)

【解析】

(Ⅰ)當(dāng),利用函數(shù)奇偶性可知,代入求得時(shí)的解析式,從而得到分段函數(shù)解析式;(Ⅱ)設(shè),利用單調(diào)性和“倒值區(qū)間”的定義可得,解方程求得結(jié)果;(Ⅲ)當(dāng)時(shí),,不滿足上的值域,可知上的“倒值區(qū)間”為,同理可得上的“倒值區(qū)間”;根據(jù)解析式可得到交點(diǎn)位置,根據(jù)交點(diǎn)位置可得關(guān)于的方程,利用函數(shù)值域可求得的范圍;通過(guò)兩段范圍可確定的取值.

(Ⅰ)當(dāng)時(shí),

為奇函數(shù)

(Ⅱ)設(shè),由(Ⅰ)知,上單調(diào)遞減

,整理得:

解得:

函數(shù)上的“倒值區(qū)間”為:

(Ⅲ)由(Ⅱ)知,函數(shù)上的“倒值區(qū)間”為

當(dāng)?shù)怪祬^(qū)間時(shí),

而函數(shù)上的值域?yàn)?/span>

函數(shù)上不存在倒值區(qū)間

即:函數(shù)上的“倒值區(qū)間”為

當(dāng)時(shí),同理可求得的倒值區(qū)間為

若函數(shù)的圖像與的圖像有兩個(gè)不同的交點(diǎn),則兩個(gè)交點(diǎn)分別在第一、三象限

當(dāng)交點(diǎn)在第一象限時(shí),方程

即:在區(qū)間內(nèi)恰有一個(gè)解

當(dāng),單調(diào)遞減且

當(dāng)交點(diǎn)在第三象限時(shí),方程

即:在區(qū)間內(nèi)恰有一個(gè)解

綜上可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競(jìng)賽成績(jī)(滿分100分)的莖葉圖,

其中有一個(gè)數(shù)字模糊不清,圖中用表示,規(guī)定成績(jī)不低于80分為優(yōu)秀.

(1)已知該12位同學(xué)競(jìng)賽成績(jī)的中位數(shù)為78,求圖中的值;

(2)從該12位同學(xué)中隨機(jī)選3位同學(xué),進(jìn)行競(jìng)賽試卷分析,

設(shè)其中成績(jī)優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣﹣4;坐標(biāo)系與參數(shù)方程
已知?jiǎng)狱c(diǎn)P,Q都在曲線C: 上,對(duì)應(yīng)參數(shù)分別為β=α與β=2α(0<α<2π),M為PQ的中點(diǎn).
(1)求M的軌跡的參數(shù)方程
(2)將M到坐標(biāo)原點(diǎn)的距離d表示為α的函數(shù),并判斷M的軌跡是否過(guò)坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(I)若,且對(duì)于,有恒成立,求的取值范圍;

(II)若,解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】釣魚(yú)島事件以來(lái),中日關(guān)系日趨緊張并不斷升級(jí).為了積極響應(yīng)保釣行動(dòng),某學(xué)校舉辦了一場(chǎng)保釣知識(shí)大賽,共分兩組.其中甲組得滿分的有1個(gè)女生和3個(gè)男生,乙組得滿分的有2個(gè)女生和4個(gè)男生.現(xiàn)從得滿分的同學(xué)中,每組各任選1個(gè)同學(xué),作為保釣行動(dòng)代言人”.

(1)求選出的2個(gè)同學(xué)中恰有1個(gè)女生的概率;

(2)設(shè)X為選出的2個(gè)同學(xué)中女生的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷售某種配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14.2

(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?

(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).

參考公式:回歸直線方程,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某輿情機(jī)構(gòu)為了解人們對(duì)某事件的關(guān)注度,隨機(jī)抽取了人進(jìn)行調(diào)查,其中女性中對(duì)該事件關(guān)注的占,而男性有人表示對(duì)該事件沒(méi)有關(guān)注.

關(guān)注

沒(méi)關(guān)注

合計(jì)

合計(jì)

(1)根據(jù)以上數(shù)據(jù)補(bǔ)全列聯(lián)表;

(2)能否有的把握認(rèn)為“對(duì)事件是否關(guān)注與性別有關(guān)”?

(3)已知在被調(diào)查的女性中有名大學(xué)生,這其中有名對(duì)此事關(guān)注.現(xiàn)在從這名女大學(xué)生中隨機(jī)抽取人,求至少有人對(duì)此事關(guān)注的概率.

附表:

查看答案和解析>>

同步練習(xí)冊(cè)答案