16.已知全集U={e,lne,ln1},集合A={1,0},則∁UA=( 。
A.{e,lne}B.{e}C.{e,lne2}D.{lne,lne2}

分析 分別求出lne=1,ln1=0,從而求出A的補(bǔ)集即可.

解答 解:全集U={e,lne,ln1}={e,1,0},集合A={1,0},
則∁UA={e},
故選:B,

點評 本題考查了集合的運算,考查對數(shù)的運算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則下列四個命題中,正確命題的個數(shù)是( 。
①若a⊥b,a⊥α,則b∥α; 
②若a∥α,α⊥β,則a∥β;
③若a⊥β,α⊥β,則a∥α;
④若a∥b,a∥α,b∥β,則α∥β.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點為F1和F2,P是橢圓上任一點,若∠F1PF2的最大值為$\frac{2π}{3}$,則此橢圓的離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知兩點A(2,0),B(-2,0),直線l過點B且與x軸垂直,點C是l上異于點B的動點,直線BP垂直線段OC并交線段AC于點P,記點P的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)過點D(-1,0)的直線與曲線 Γ交于M,N兩點,直線AM,AN分別與l交于E,F(xiàn)兩點.當(dāng)△AEF的面積是△AMN的面積的2倍時,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=3cos($\frac{π}{4}$-ωx)(ω>0),函數(shù)f(x)相鄰兩個零點之間的絕對值為$\frac{π}{2}$,則下列為函數(shù)f(x)的單調(diào)遞減區(qū)間的是( 。
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{8}$,$\frac{5π}{8}$]D.[$\frac{5π}{8}$,$\frac{9π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正項數(shù)列{an}的前n項和Sn滿足6Sn=an2+3an+2,且a2是a1和a6的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)符合[x]表示不超過實數(shù)x的最大整數(shù),如[log23]=1,[log25]=2.記${b_n}=[{log_2}\frac{{{a_n}+5}}{3}]$,求數(shù)列$\{{2^n}•{b_{2^n}}\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=x2+ln(x+a)與g(x)=x2+ex-$\frac{1}{2}$(x<0)的圖象上存在關(guān)于y軸對稱的點,則實數(shù)a的取值范圍是(-∞,$\sqrt{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知全集U=R,集合A={0,1,2,3,4},B={x|0<x<3},則如圖中陰影部分所表示的集合為( 。
A.{0,1,2}B.{0,1,}C.{0,3,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)為偶函數(shù)的是( 。
A.f(x)=x2-xB.f(x)=xcosxC.f(x)=xsinxD.$f(x)=1g({x+\sqrt{{x^2}+1}})$

查看答案和解析>>

同步練習(xí)冊答案