【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為),圓的參數(shù)方程為: (其中為參數(shù)).
(1)判斷直線與圓的位置關(guān)系;
(2)若橢圓的參數(shù)方程為(為參數(shù)),過圓的圓心且與直線垂直的直線與橢圓相交于兩點(diǎn),求.
【答案】(1)直線與圓相離;(2).
【解析】試題分析:
(1)利用極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)系間的轉(zhuǎn)化關(guān)系,可得直線和圓的普通方程,進(jìn)而能判斷直線和圓的位置關(guān)系. (2)將橢圓的參數(shù)方程化為普通方程為,由直線: 的斜率為,可得直線的斜率為,即傾斜角為,進(jìn)而求得直線的參數(shù)方程為 (為參數(shù)),把直線的參數(shù)方程代入,整理得 (*),然后再利用韋達(dá)定理和弦長公式即可求出結(jié)果.
試題解析:
解: (1)將直線的極坐標(biāo)方程,化為直角坐標(biāo)方程: .
將圓的參數(shù)方程化為普通方程: ,圓心為,半徑.
∴圓心到直線的距離為,
∴直線與圓相離.
(2)將橢圓的參數(shù)方程化為普通方程為,
∵直線: 的斜率為,
∴直線的斜率為,即傾斜角為,
則直線的參數(shù)方程為 (為參數(shù)),即 (為參數(shù)),
把直線l'的參數(shù)方程代入,
整理得 (*)
由于,
故可設(shè), 是方程(*)的兩個(gè)不等實(shí)根,則有, ,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一長為24米的籬笆,一面利用墻(墻最大長度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,
(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與y軸的正半軸相交于點(diǎn)M,且橢圓E上相異兩點(diǎn)A、B滿足直線MA,MB的斜率之積為.
(Ⅰ)證明直線AB恒過定點(diǎn),并求定點(diǎn)的坐標(biāo);
(Ⅱ)求三角形ABM的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與y軸的正半軸相交于點(diǎn)M,且橢圓E上相異兩點(diǎn)A、B滿足直線MA,MB的斜率之積為.
(Ⅰ)證明直線AB恒過定點(diǎn),并求定點(diǎn)的坐標(biāo);
(Ⅱ)求三角形ABM的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點(diǎn)M為AB1的中點(diǎn),點(diǎn)P為對(duì)角線AC1上的動(dòng)點(diǎn),點(diǎn)Q為底面ABCD上的動(dòng)點(diǎn)(點(diǎn)P、Q可以重合),則MP+PQ的最小值為( 。
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測量觀光塔的高度(單位:米),如圖所示,垂直放置的標(biāo)桿的高度米,已知, .
(1)該班同學(xué)測得一組數(shù)據(jù): ,請(qǐng)據(jù)此算出的值;
(2)該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離(單位:米),使與的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時(shí), 的值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com