【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,

.

(1)求證:

(2)若平面與平面所成的銳二面角的大小為,求線段的長(zhǎng)度.

【答案】(1)證明過(guò)程詳見(jiàn)解析;(2).

【解析】

試題分析:本題主要考查線線垂直、線面垂直、面面垂直、二面角等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問(wèn),由已知得,,所以利用線面平行的判定得平面,再利用線面垂直的性質(zhì),得;第二問(wèn),可以利用傳統(tǒng)幾何法求二面角的平面角,也可以利用向量法求平面和平面的法向量,利用夾角公式列出方程,通過(guò)解方程,求出線段的長(zhǎng)度..

(1)證明:底面和側(cè)面是矩形,

,

平面 3分

平面 6分

(2)

解法1:延長(zhǎng),交于,連結(jié),

則平面平面

底面是矩形, 的中點(diǎn),,連結(jié),則

又由(1)可知

,

底面,平面 9

過(guò),連結(jié),是平面與平面平面與平面所成銳二面角的平面角,所以

,

又易得,,從而由,求得 12分

解法2:由(1)可知

,底面 7分

設(shè)的中點(diǎn),以為原點(diǎn),以,所在直線分別為軸,建立空間直角坐標(biāo)系如圖. 8分

設(shè),則,,,

設(shè)平面的一個(gè)法向量

,

,得

,得 9分

設(shè)平面法向量為,因?yàn)?,,

,得 10分

由平面與平面所成的銳二面角的大小為,

,解得. 即線段的長(zhǎng)度為 12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時(shí),討論單調(diào)性;

(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,對(duì)給定的正數(shù),若存在閉區(qū)間,使得函數(shù)滿足:①內(nèi)是單調(diào)函數(shù);②上的值域?yàn)?/span>,則稱區(qū)間級(jí)“理想?yún)^(qū)間”.下列結(jié)論錯(cuò)誤的是( )

A. 函數(shù))存在1級(jí)“理想?yún)^(qū)間”

B. 函數(shù))不存在2級(jí)“理想?yún)^(qū)間”

C. 函數(shù))存在3級(jí)“理想?yún)^(qū)間”

D. 函數(shù) 不存在4級(jí)“理想?yún)^(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)7分,2小問(wèn)5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程為),圓的參數(shù)方程為: (其中為參數(shù)).

(1)判斷直線與圓的位置關(guān)系;

(2)若橢圓的參數(shù)方程為為參數(shù)),過(guò)圓的圓心且與直線垂直的直線與橢圓相交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐中, 平面,底面是正方形, .

(1)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(2)求點(diǎn)、分別是棱的中點(diǎn),求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時(shí)刻,甲船在最前面的點(diǎn)處,乙船在中間點(diǎn)處,丙船在最后面的點(diǎn)處,且.一架無(wú)人機(jī)在空中的點(diǎn)處對(duì)它們進(jìn)行數(shù)據(jù)測(cè)量,在同一時(shí)刻測(cè)得, .(船只與無(wú)人機(jī)的大小及其它因素忽略不計(jì))

(1)求此時(shí)無(wú)人機(jī)到甲、丙兩船的距離之比;

(2)若此時(shí)甲、乙兩船相距100米,求無(wú)人機(jī)到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形中, , ,沿對(duì)角線折起,使點(diǎn)在平面上的射影落在上.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

同步練習(xí)冊(cè)答案