1.極坐標(biāo)方程ρ=cosθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)表示的曲線是(  )
A.B.半圓C.射線D.直線

分析 利用互化公式把極坐標(biāo)方程化為直角坐標(biāo)方程即可判斷出結(jié)論.

解答 解:ρ=cosθ即ρ2=ρcosθ,可得x2+y2=x,配方為$(x-\frac{1}{2})^{2}$+y2=$\frac{1}{4}$.
∵-$\frac{π}{2}$≤θ≤$\frac{π}{2}$,∴x∈[0,1],y∈$[-\frac{1}{2},\frac{1}{2}]$.
因此極坐標(biāo)方程ρ=cosθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)表示的曲線是以$(\frac{1}{2},0)$為圓心,$\frac{1}{2}$為半徑的圓.
故選:A.

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)的互化、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求下列函數(shù)的導(dǎo)數(shù):
(1)y=3x3-$\frac{1}{4}$;
(2)y=$\frac{{x}^{3}}{\sqrt{x}}$-e3;
(3)y=ax2+bx+c;
(4)y=$\frac{1+x}{2-{x}^{2}}$;
(5)y=(1+cosx)(x-lnx);
(6)y=x10+ln(1+x2);
(7)y=2sin(4-3x);
(8)y=x2$\sqrt{1-x}$;
(9)y=$\frac{co{s}^{2}x}{1+sinx}$;
(10)y=(x2-5)3+2(x2-5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=$\frac{x+1}{{e}^{x}}$(e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的極大值;
(Ⅱ)令h(x)=a+2f′(x)(a∈R),若h(x)有兩個(gè)零點(diǎn),x1,x2(x1<x2),求a的取值范圍;
(Ⅲ)設(shè)F(x)=aex-x2,在(Ⅱ)的條件下,試證明0<F(x1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知在Rt△ABC中,∠C=90°,點(diǎn)P在平面ABC外,且PA=PB=PC,PO⊥平面ABC于點(diǎn)P,則O是( 。
A.AC邊的中點(diǎn)B.BC邊的中點(diǎn)C.AB邊的中點(diǎn)D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)在直三棱錐ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,E,F(xiàn)依次為CC1,BC的中點(diǎn).
(1)求異面直線A1B與EF所成角θ的大小;
(2)求直線EF與平面ABC所成角大小;
(3)求點(diǎn)C到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,C1:$\left\{\begin{array}{l}{x=t}\\{y=k(t-1)}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2:ρ2+10ρcosθ-6ρsinθ+33=0.
(1)求C1的普通方程及C2的直角坐標(biāo)方程,并說(shuō)明它們分別表示什么曲線;
(2)若P,Q分別為C1,C2上的動(dòng)點(diǎn),且|PQ|的最小值為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4.
(I)已知點(diǎn)A的極坐標(biāo)為(5,π),求過(guò)點(diǎn)A且與曲線C相切的直線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)B的極坐標(biāo)為(3,0),過(guò)點(diǎn)B的直線與曲線C交于M、N兩點(diǎn),當(dāng)△OMN的面積最大時(shí),求直線MN的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓方程為$\frac{{x}^{2}}{2}$+y2=1,點(diǎn)B(0,1)為橢圓的上頂點(diǎn),直線l:y=kx+m交橢圓于P、Q兩點(diǎn),設(shè)直線PB,QB的斜率分別為k1、k2,且k1k2=1
(1)求證:直線l過(guò)定點(diǎn)M,并求出點(diǎn)M的坐標(biāo);
(2)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)點(diǎn)M(1,m),若在圓O:x2+y2=1上存在一點(diǎn)N,使得∠OMN=30°,則實(shí)數(shù)m的取值范圍是[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案