分析 根據(jù)題意,問題轉(zhuǎn)化為直線x=1上的點M與圓x2+y2=1上的點T(1,0)所組成的∠OMT≥30°,由此求出m的取值范圍.
解答 解:如圖所示,
易知M(1,m)在直線x=1上,設(shè)圓x2+y2=1與直線x=1的交點為T,
假設(shè)存在點N,使得∠OMN=30°,則必有∠OMN≤∠OMT,
所以要是圓上存在點N,使得∠OMN=30°,只需∠OMT≥30°,
因為T(1,0),所以只需在Rt△OMT中,tan∠OMT=$\frac{OT}{TM}$=$\frac{1}{|m|}$≥tan30°=$\frac{\sqrt{3}}{3}$,
解得|m|≤$\sqrt{3}$,當(dāng)m=0時,滿足題意,
故m∈[-$\sqrt{3}$,$\sqrt{3}$].
故答案為:[-$\sqrt{3}$,$\sqrt{3}$].
點評 本題考查了直線與圓的應(yīng)用問題,解題時應(yīng)弄清楚M點所在的位置,找到∠OMN與∠OMT的大小關(guān)系,從而構(gòu)造出關(guān)于m的不等式,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 半圓 | C. | 射線 | D. | 直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | ||
C. | 相交但直線不過圓心 | D. | 相交且直線過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
$\sum_{i=1}^6{({ln{x_i}•ln{y_i}})}$ | $\sum_{i=1}^6{({ln{x_i}})}$ | $\sum_{i=1}^6{({ln{y_i}})}$ | ${\sum_{i=1}^6{{{({ln{x_i}})}^2}}^{\;}}$ |
75.3 | 24.6 | 18.3 | 101.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com