13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,拋物線y2=4x與橢圓C有相同的焦點(diǎn),點(diǎn)P為拋物線與橢圓C在第一象限的交點(diǎn),且|PF1|=$\frac{7}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)探照燈的軸截面是一拋物線,如圖所示表示平行于x軸的光線于拋物線上的點(diǎn)P,Q的反射情況,光線PQ過焦點(diǎn)F,如圖所示,若拋物線y2=4x,設(shè)點(diǎn)P的縱坐標(biāo)為a(a>0),問a取何值時(shí),從入射點(diǎn)P到反射點(diǎn)Q的光線的路程PQ最短.

分析 (I)求得拋物線的焦點(diǎn),可得c=1,設(shè)P為($\frac{{m}^{2}}{4}$,m),由橢圓的焦半徑公式可得|PF1|=a+$\frac{1}{a}$•$\frac{{m}^{2}}{4}$=$\frac{7}{3}$,由橢圓和拋物線的定義可得,2a=$\frac{7}{3}$+$\frac{{m}^{2}}{4}$+1,解方程可得a=2,由a,b,c的關(guān)系,可得b,進(jìn)而得到橢圓方程;
(Ⅱ)設(shè)PQ方程為x=my+1,代入拋物線方程,由韋達(dá)定理求得y1+y2=4m,y1•y2=-4,由弦長(zhǎng)公式可知丨PQ丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=4(1+m2),即當(dāng)m=0時(shí),即a=2時(shí),丨PQ丨取得最小值,最小值為4.

解答 解:(Ⅰ)由拋物線y2=4x焦點(diǎn)坐標(biāo)為(1,0),即c=1,
設(shè)P為($\frac{{m}^{2}}{4}$,m),
由橢圓的焦半徑公式可得,|PF1|=a+$\frac{1}{a}$•$\frac{{m}^{2}}{4}$=$\frac{7}{3}$,
由橢圓和拋物線的定義可得,2a=$\frac{7}{3}$+$\frac{{m}^{2}}{4}$+1,
解得:a=2,b=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{3}$,
即有橢圓的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)由F(1,0),設(shè)直線PQ方程為x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,整理得:y2-4my-4=0,
由韋達(dá)定理可知:y1+y2=4m,y1•y2=-4,
丨PQ丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+16}$,
=4(1+m2),
∴當(dāng)m=0時(shí),即a=2時(shí),丨PQ丨取得最小值,最小值為4.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,考查焦半徑公式和拋物線的定義,考查直線與拋物線的位置關(guān)系,弦長(zhǎng)公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5+a6(2x-1)6則a1+a3+a5=-$\frac{63}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知平面α∩β=l,點(diǎn)A∈α,點(diǎn)B∈α,點(diǎn)C∈β,且A∉l,B∉l,直線AB與l不平行,那么平面ABC與平面β的交線與l有什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如表:
消費(fèi)次第第1次第2次第3次第4次≥5次
收費(fèi)比例10.950.900.850.80
該公司從注冊(cè)的會(huì)員中,隨機(jī)抽取了100位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如表:
消費(fèi)次第第1次第2次第3次第4次第5次
頻數(shù)60201055
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(3)設(shè)該公司從至少消費(fèi)兩次,求這的顧客消費(fèi)次數(shù)用分層抽樣方法抽出8人,再?gòu)倪@8人中抽出2人發(fā)放紀(jì)念品,求抽出2人中恰有1人消費(fèi)兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\frac{{{x^2}-2x+1}}{x}$在[$\frac{1}{2}$,3]的最小值為(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{ax}{{1+{x^2}}}$是定義在(-1,1)上的函數(shù),f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求a的值并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)證明函數(shù)f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+3x+2的值,當(dāng)x=-2時(shí),v3的值為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|y=ln(-x2+3x+4)},B={y|y=2${\;}^{-{x^2}+2x+2}}$,x∈R},則A∩B=( 。
A.(0,1)B.(0,4)C.(3,4)D.(4,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l:mx-(m2+1)y=3(m≥0).
(1)求直線l斜率的取值范圍;
(2)若直線l被圓C:x2+y2-2y-8=0截得的弦長(zhǎng)為4,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案