【題目】已知函數(shù) ,對(duì)a∈R,b∈(0,+∞),使得f(a)=g(b),則b﹣a的最小值為(
A.
B.
C.
D.

【答案】A
【解析】解:∵f(x)=e2x , g(x)=lnx+ , ∴f1(x)= lnx,g1(x)= ,
令h(x)=g1(x)﹣f1(x)= lnx,
則b﹣a的最小值,即為h(x)的最小值,
∵h(yuǎn)′(x)=)= ,
令h′(x)=0,解得x= ,
∵當(dāng)x∈(0, )時(shí),h′(x)<0,當(dāng)x∈( ,+∞)時(shí),h′(x)>0,
故當(dāng)x= 時(shí),h(x)取最小值1﹣ =1+ ,
故選:A.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的值域,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin(2x+ )圖象上的每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,再將所得圖象向左平移 個(gè)單位得到函數(shù)g(x)的圖象.在g(x)圖象的所有對(duì)稱中心中,離原點(diǎn)最近的對(duì)稱中心為( )
A.(﹣ ,0)
B.( ,0)
C.(﹣ ,0)
D.( ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C,D的動(dòng)點(diǎn),將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個(gè)說(shuō)法中正確的個(gè)數(shù)是( )
①存在點(diǎn)E使得直線SA⊥平面SBC
②平面SBC內(nèi)存在直線與SA平行
③平面ABCE內(nèi)存在直線與平面SAE平行.

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax﹣1﹣lnx(a∈R).
(1)當(dāng)a=1時(shí),求曲線在點(diǎn)(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n(n+1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足: ,求數(shù)列{bn}的通項(xiàng)公式;
(3)令 ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是( )

A.0
B.﹣1
C.﹣2
D.﹣8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2007年在廣州舉行的全國(guó)少數(shù)民族運(yùn)動(dòng)會(huì)上,七位評(píng)委為某民族舞蹈打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( )

A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點(diǎn)F在BE上,若DE∥平面ACF,DC=CE= BC=3,求三棱錐A﹣BCF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案