(理科做)
4
0
|x2-2x|dx=
 
考點:定積分
專題:導數(shù)的概念及應用
分析:將:∫04|x2-2x|dx轉(zhuǎn)化成∫02(2x-x2)dx+∫24(x2-2x)dx,然后根據(jù)定積分的定義先求出被積函數(shù)的原函數(shù),然后求解即可.
解答: 解:∫04|x2-2x|dx
=∫02(2x-x2)dx+∫24(x2-2x)dx
=(x2-
1
3
x3)
|
2
0
+(
1
3
x3-x2)
|
4
2

=(4-
1
3
×8)+(
1
3
×64-16)-(
1
3
×8-4)

=8,
故答案為:8.
點評:本題主要考查了定積分,定積分運算是求導的逆運算,同時考查了轉(zhuǎn)化與劃歸的思想,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:x2+2y2=4.
(1)求橢圓C的離心率;
(2)已知O為原點,點A(t,2)(t∈R),點B在橢圓C上,若OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式
ax
x-1
<1的解集為{x|x<1或x>3},則a的值為( 。
A、3
B、
1
3
C、-
2
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖設計一幅矩形宣傳畫,要求畫面(陰影部分)面積為4840cm2,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=(
3
4
 x2-5x+6的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過多年的運作,“雙十一”搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2014年“雙十一”網(wǎng)購狂歡節(jié),某廠商擬投入適當?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量P萬件與促銷費用x萬元滿足P=3-
2
x+1
(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該批產(chǎn)品P萬件還需投入成本10+2P萬元(不含促銷費用),產(chǎn)品的銷售價格定為(4+
20
P
)
元/件,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(Ⅰ)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(Ⅱ)促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
5
-
y2
4
=1的右焦點為F,P是雙曲線右支上任意一點,定點M(6,2),則3|PM|+
5
|PF|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a2=5,S5=55.
(Ⅰ)求an及Sn;
(Ⅱ)若數(shù)列{
4
an2-1
}的前n項和Tn,試求Tn并證明不等式
1
2
≤Tn<1成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過拋物線x2=4y的焦點和雙曲線
x2
4
-
y2
5
=1
的右焦點的直線方程為( 。
A、3x+y-3=0
B、x+3y-3=0
C、x+48y-3=0
D、48x+y-3=0

查看答案和解析>>

同步練習冊答案