【題目】通過隨機詢問名不同性別的大學生在購買食物時是否看營養(yǎng)說明,得到如下列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | |||
不讀營養(yǎng)說明 | |||
總計 |
附:
(1)由以上列聯(lián)表判斷,能否在犯錯誤的概率不超過的前提下認為性別和是否看營養(yǎng)說明有關(guān)系呢?
(2)從被詢問的名不讀營養(yǎng)說明的大學生中隨機選取名學生,求抽到女生人數(shù)的分布列及數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】秸稈還田是當今世界上普通重視的一項培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產(chǎn)作用.某農(nóng)機戶為了達到在收割的同時讓秸稈還田,花元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該農(nóng)機戶付費維修保養(yǎng),所付費用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費元,第五年付費元.
(1)試求出該農(nóng)機戶用于維修保養(yǎng)的費用(元)與使用年數(shù)的函數(shù)關(guān)系;
(2)這臺收割機使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們知道,函數(shù)的圖象關(guān)于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).
(1)求函數(shù)圖象的對稱中心;
(2)類比上述推廣結(jié)論,寫出“函數(shù)的圖象關(guān)于y軸成軸對稱圖形的充要條件是函數(shù)為偶函數(shù)”的一個推廣結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若對于定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對任意實數(shù)都成立,則稱是一個“特征函數(shù)”.下列結(jié)論中正確的個數(shù)為( 。
①是常數(shù)函數(shù)中唯一的“特征函數(shù)”;
②不是“特征函數(shù)”;
③“特征函數(shù)”至少有一個零點;
④是一個“特征函數(shù)”.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有一批專業(yè)技術(shù)人員,對他們進行年齡狀況和接受教育程度(學歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
(1)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取人,求至少有人的學歷為研究生的概率;
(2)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個人,其中歲以下人,歲以上人,再從這個人中隨機抽取出人,此人的年齡為歲以上的概率為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為8.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:
(1)命題“若、都是奇數(shù),則是偶數(shù)”的否命題是“若、都不是奇數(shù),則不是偶數(shù)”;
(2)命題“如果,那么”是真命題;
(3)“或”是“”的必要不充分條件.
那么其中正確的說法有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com