【題目】秸稈還田是當(dāng)今世界上普通重視的一項(xiàng)培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時(shí)還有增肥增產(chǎn)作用.某農(nóng)機(jī)戶為了達(dá)到在收割的同時(shí)讓秸稈還田,花元購買了一臺(tái)新型聯(lián)合收割機(jī),每年用于收割可以收入萬元(已減去所用柴油費(fèi));該收割機(jī)每年都要定期進(jìn)行維修保養(yǎng),第一年由廠方免費(fèi)維修保養(yǎng),第二年及以后由該農(nóng)機(jī)戶付費(fèi)維修保養(yǎng),所付費(fèi)用(元)與使用年數(shù)的關(guān)系為:,已知第二年付費(fèi)元,第五年付費(fèi)元.

(1)試求出該農(nóng)機(jī)戶用于維修保養(yǎng)的費(fèi)用(元)與使用年數(shù)的函數(shù)關(guān)系;

(2)這臺(tái)收割機(jī)使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費(fèi)用-購買機(jī)械費(fèi)用)

【答案】(1) .

(2) 這臺(tái)收割機(jī)使用年,可使年均收益最大.

【解析】試題分析:根據(jù)第二年付費(fèi)元,第五年付費(fèi)元可得關(guān)于的方程組,解出即可得到函數(shù)關(guān)系記使用年,年均收益為(元),利用基本不等式求最值即可

解析:(Ⅰ)依題意,當(dāng),;,,

,解得,

所以.

(Ⅱ)記使用年,年均收益為(元),

則依題意,,

,

當(dāng)且僅當(dāng),即時(shí)取等號(hào).

所以這臺(tái)收割機(jī)使用14年,可使年均收益最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)設(shè)數(shù)列滿足,其中.記的前項(xiàng)和為.是否存在正整數(shù),使得成立?若存在,請(qǐng)求出所有滿足條件的;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|x-a|-1,(a為常數(shù)).

1)若fx)在x[0,2]上的最大值為3,求實(shí)數(shù)a的值;

2)已知gx=xfx+a-m,若存在實(shí)數(shù)a∈(-12],使得函數(shù)gx)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于各數(shù)不相等的正整數(shù)組(i1, i2, …, in),(n是不小于2的正整數(shù)),如果在p>q時(shí)有,則稱ipiq是該數(shù)組的一個(gè)好序,一個(gè)數(shù)組中好序的個(gè)數(shù)稱為此數(shù)組的好序數(shù),例如,數(shù)組(1, 3, 4, 2)中有好序“1, 3”,“1, 4”,“1, 2”,“3, 4”,其好序數(shù)等于4. 若各數(shù)互不相等的正整數(shù)組(a1, a2, a3, a4, a5, a6, a7)的好序數(shù)等于3,則(a7,a6, a5, a4, a3, a2, a1)的好序數(shù)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是具有下列性質(zhì)的函數(shù)的全體:存在實(shí)數(shù)對(duì),使得對(duì)定義域內(nèi)任意實(shí)數(shù)x都成立.

1)判斷函數(shù),是否屬于集合;

2)若函數(shù)具有反函數(shù),是否存在相同的實(shí)數(shù)對(duì),使得同時(shí)屬于集合若存在,求出相應(yīng)的;若不存在,說明理由;

3)若定義域?yàn)?/span>的函數(shù)屬于集合,且存在滿足有序?qū)崝?shù)對(duì);當(dāng)時(shí),的值域?yàn)?/span>,求當(dāng)時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意實(shí)數(shù),,都有,當(dāng)時(shí),.

1)求的值;

2)證明:當(dāng)時(shí),.

3)證明:上單調(diào)遞減.

4)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對(duì)任意的實(shí)數(shù)m,n都有,且當(dāng)時(shí),.

(1);

(2)求證:R上為增函數(shù);

(3),且關(guān)于x的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),g(x)(a>0,且a≠1).

(1)求函數(shù)φ(x)f(x)g(x)的定義域;

(2)試確定不等式f(x)≤g(x)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問名不同性別的大學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下列聯(lián)表:

總計(jì)

讀營養(yǎng)說明

不讀營養(yǎng)說明

總計(jì)

附:

(1)由以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為性別和是否看營養(yǎng)說明有關(guān)系呢?

(2)從被詢問的名不讀營養(yǎng)說明的大學(xué)生中隨機(jī)選取名學(xué)生,求抽到女生人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案