若圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且與直線相切, 從圓外一點(diǎn)向該圓引切線,為切點(diǎn),
(Ⅰ)求圓的方程;
(Ⅱ)已知點(diǎn),且, 試判斷點(diǎn)是否總在某一定直線上,若是,求出的方程;若不是,請(qǐng)說明理由;
(Ⅲ)若(Ⅱ)中直線軸的交點(diǎn)為,點(diǎn)是直線上兩動(dòng)點(diǎn),且以為直徑的圓過點(diǎn),圓是否過定點(diǎn)?證明你的結(jié)論.

(1)
(2)
(3)圓過定點(diǎn)

解析試題分析:解(Ⅰ)設(shè)圓心由題易得  1分   半徑,  2分
  3分    所以圓的方程為  4分
(Ⅱ)由題可得  5分  所以  -6分
  7分
所以   整理得
所以點(diǎn)總在直線上  8分
(Ⅲ)  9分  由題可設(shè)點(diǎn),,
則圓心,半徑  10分
從而圓的方程為  11分
整理得   又點(diǎn)在圓上,故
  12分   所以
,  13分  所以
所以圓過定點(diǎn)  14分
考點(diǎn):圓的方程
點(diǎn)評(píng):主要是考查了圓的方程以及直線方程的求解,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過A(1,1)、B(2,)兩點(diǎn),且圓心C在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí)
求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí),求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求圓心在直線3x+y-5=0上,并且經(jīng)過原點(diǎn)和點(diǎn)(4,0)的圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓內(nèi)一點(diǎn)過點(diǎn)的直線交圓 兩點(diǎn),且滿足 (為參數(shù)).
(1)若,求直線的方程;
(2)若求直線的方程;
(3)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位。且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(I)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知與兩平行直線都相切,且圓心在直線上,
(Ⅰ)求的方程;
(Ⅱ)斜率為2的直線相交于兩點(diǎn),為坐標(biāo)原點(diǎn)且滿足,求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案