(本小題滿分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長是,側(cè)棱長是3,點(diǎn)E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.
(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.
證明:(1)連接,
正四棱柱
通過,同理可得:
;
(2)。
解析試題分析:證明:(1)連接
正四棱柱 ------2分
又
-------4分
同理可得:
--------------------6分
(2) ∽
-------8分
又 底面邊長是,側(cè)棱長是3
--------9分
得 ,
同理 -----------(10分)
又 , --------------12分
證法二 建立空間直角坐標(biāo)系(略)
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系,角的計(jì)算。
點(diǎn)評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡化證明過程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,M是BD的中點(diǎn),N是BC的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖4所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖5、圖6分別是該標(biāo)識(shí)墩的正(主)視圖和俯視圖.
(Ⅰ)求該安全標(biāo)識(shí)墩的體積;
(Ⅱ)證明:直線BD平面PEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)直三棱柱中,點(diǎn)M、N分別為線段的中點(diǎn),平面側(cè)面
(1)求證:MN//平面 (2)證明:BC平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)一個(gè)圓錐,它的底面直徑和高均為.
(1)求這個(gè)圓錐的表面積和體積.
(2)在該圓錐內(nèi)作一內(nèi)接圓柱,當(dāng)圓柱的底面半徑和高分別為多少時(shí),它的側(cè)面積最大?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知直三棱柱中,,點(diǎn)M是的中點(diǎn),Q是AB的中點(diǎn),
(1)若P是上的一動(dòng)點(diǎn),求證:;
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分).如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC的中點(diǎn),且DE∥BC.
(1)求證:DE∥平面ACD
(2)求證:BC⊥平面PAC;
(3)求AD與平面PAC所成的角的正弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com