A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 易知函數(shù)f(x)=$\sqrt{x}$+x-k在區(qū)間(2,3)上單調(diào)遞增,從而可得($\sqrt{2}$+2-k)($\sqrt{3}$+3-k)<0,從而解得.
解答 解:易知函數(shù)f(x)=$\sqrt{x}$+x-k在區(qū)間(2,3)上單調(diào)遞增,
∵f(x)在區(qū)間(2,3)上有零點(diǎn),
∴($\sqrt{2}$+2-k)($\sqrt{3}$+3-k)<0,
又∵k∈Z,
∴k=4,
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性的判斷與零點(diǎn)的判定定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c>a>b | B. | a>b>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | F(-$\frac{3}{4}$)≤F(a2-a+1) | B. | F(-$\frac{3}{4}$)>F(a2-a+1) | C. | F(-$\frac{3}{4}$)≥F(a2+a+1) | D. | F(-$\frac{3}{4}$)<F(a2+a+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com