【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在內(nèi)有極值,試比較與的大小,并證明你的結(jié)論.
【答案】(1)當(dāng)時(shí),在上是增函數(shù),在上是增函數(shù);當(dāng)時(shí),在上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù); (2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.見解析
【解析】
(1)求導(dǎo)得到,討論,,三種情況計(jì)算得到答案.
(2)根據(jù)題意有一變號零點(diǎn)在區(qū)間上,得到,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性得到答案.
(1)定義域?yàn)?/span>,
設(shè)
當(dāng)時(shí),,此時(shí),從而恒成立,
故函數(shù)在上是增函數(shù),在上是增函數(shù);
當(dāng)時(shí),函數(shù)圖象開口向上,對稱軸,又
所以此時(shí),從而恒成立,
故函數(shù)在上是增函數(shù),在上是增函數(shù);
當(dāng)時(shí),,設(shè)有兩個(gè)不同的實(shí)根,
共中,
令,則,
令,得或;令,得或,
故函數(shù)在上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù).
綜上,當(dāng)時(shí),函數(shù)在上是增函數(shù),在上是增函數(shù);
當(dāng)時(shí),函數(shù)在上是增函數(shù),在上是增函數(shù),在上是減函數(shù),在上是減函數(shù).
(2)要使在上有極值,由(1)知,①
則有一變號零點(diǎn)在區(qū)間上,不妨設(shè),
又因?yàn)?/span>,∴,又,
∴只需,即,∴,②
聯(lián)立①②可得:.
從而與均為正數(shù).
要比較與的大小,同取自然底數(shù)的對數(shù),
即比較與的大小,再轉(zhuǎn)化為比較與的大小.
構(gòu)造函數(shù),則,
再設(shè),則,從而在上單調(diào)遞減,
此時(shí),故在上恒成立,則在上單調(diào)遞減.
綜上所述,當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號召,某貧困縣在精準(zhǔn)推進(jìn)上下功夫,在精準(zhǔn)扶貧上見實(shí)效.根據(jù)當(dāng)?shù)貧夂蛱攸c(diǎn)大力發(fā)展中醫(yī)藥產(chǎn)業(yè),藥用昆蟲的使用相應(yīng)愈來愈多,每年春暖以后到寒冬前,昆蟲大量活動(dòng)與繁殖,易于采取各種藥用昆蟲.已知一只藥用昆蟲的產(chǎn)卵數(shù)(單位:個(gè))與一定范圍內(nèi)的溫度(單位:)有關(guān),于是科研人員在月份的天中隨機(jī)選取了天進(jìn)行研究,現(xiàn)收集了該種藥物昆蟲的組觀察數(shù)據(jù)如表:
日期 | 日 | 日 | 日 | 日 | 日 |
溫度 | |||||
產(chǎn)卵數(shù)個(gè) |
(1)從這天中任選天,記這天藥用昆蟲的產(chǎn)卵數(shù)分別為、,求“事件,均不小于”的概率?
(2)科研人員確定的研究方案是:先從這組數(shù)據(jù)中任選組,用剩下的組數(shù)據(jù)建立線性回歸方程,再對被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
①若選取的是月日與月日這組數(shù)據(jù),請根據(jù)月日、日和日這三組數(shù)據(jù),求出關(guān)于的線性回歸方程?
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的差的絕對值均不超過個(gè),則認(rèn)為得到的線性回歸方程是可靠的,試問①中所得的線性回歸方程是否可靠?
附公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com