A. | ($\frac{1}{3}$,+∞) | B. | (-∞,$\frac{1}{3}$) | C. | [$\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$] |
分析 先求導(dǎo)函數(shù),根據(jù)函數(shù)在區(qū)間(-∞,+∞)內(nèi)既有極大值,又有極小值,故導(dǎo)函數(shù)為0的方程有不等的實數(shù)根,可求實數(shù)a的取值范圍.
解答 解:求導(dǎo)函數(shù):f′(x)=3x2+2x+m,
∵函數(shù)f(x)既有極大值又有極小值,
∴△=4-12m>0,∴a<$\frac{1}{3}$,
故選:B.
點評 本題的考點是函數(shù)在某點取得極值的條件,主要考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)極值的能力,關(guān)鍵是將問題轉(zhuǎn)化為導(dǎo)函數(shù)為0的方程有不等的實數(shù)根.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是增函數(shù) | B. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是減函數(shù) | ||
C. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是增函數(shù) | D. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (1,+∞) | C. | (1,4] | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com