【題目】關(guān)于函數(shù)有下述四個結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有個零點

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有不正確結(jié)論的編號是(

A.①③④B.②③C.①④D.①③

【答案】B

【解析】

化簡函數(shù)的解析式為,判斷函數(shù)的奇偶性可判斷命題①的正誤;利用函數(shù)周期性的定義可判斷命題②的正誤;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可判斷命題③④的正誤,綜合可得出結(jié)論.

.

對于①,因為,

所以函數(shù)為奇函數(shù),關(guān)于原點對稱,且過圓心,而圓也是關(guān)于原點對稱,所以①正確;

對于②,因為,

所以函數(shù)的周期不是,即②錯誤;

對于③,因為,所以函數(shù)單調(diào)遞減,

所以,函數(shù)在區(qū)間上至多有個零點,即③錯誤;

對于④,由③可知,函數(shù)單調(diào)遞減,即④正確.

綜上所述,所有不正確結(jié)論的編號是②③.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用 (基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強險第二年價格計算公式具體如下:交強險最終保費基準(zhǔn)保費浮動比率).發(fā)生交通事故的次數(shù)越多,出險次數(shù)的就越多,費率也就越髙,具體浮動情況如下表:

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險次數(shù),得到下面的柱狀圖:

已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費用為.

1為事件的估計值;

2的平均估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長為ab,c,有下列四個命題:

①以,,為邊長的三角形一定存在;

②以,,為邊長的三角形一定存在;

③以,為邊長的三角形一定存在;

④以,為邊長的三角形一定存在.

其中正確的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,準(zhǔn)線為,拋物線上存在一點,過點,垂足為,使是等邊三角形且面積為.

(1)求拋物線的方程;

(2)若點是圓與拋物線的一個交點,點,當(dāng)取得最小值時,求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于簡單幾何體的說法中正確的是(

①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

③有兩個底面平行且相似,其余各面都是梯形的多面體是棱臺;

④空間中到定點的距離等于定長的所有點的集合是球面.

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社團有男生30名,女生20名,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生.有以下3種說法:

①該抽樣可能是簡單隨機抽樣;

②該抽樣不可能是分層隨機抽樣;

③該抽樣中,男生被抽到的概率大于女生被抽到的概率.

其中說法正確的為(

A.①②③B.①②C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)圖像經(jīng)過點.

1)當(dāng)時,求的單調(diào)區(qū)間;

2且函數(shù)在區(qū)間上有且只有個極值點時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,(其中為自然對數(shù)的底數(shù),…).

(1)當(dāng)時,求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(3)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定兩個七棱錐,它們有公共面的底面,頂點、在底面的兩則.現(xiàn)將下述線段中的每一條染紅、藍兩色之一:,底面上的所有對角線和所有的側(cè)棱.求證:圖中心存在一個同色三角形.

查看答案和解析>>

同步練習(xí)冊答案