2.隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖,如圖所示,則甲乙的中位數(shù)分別為( 。
A.17和17B.17和17.3C.16.8和17D.169和171.5

分析 利用莖葉圖性質(zhì)和中位數(shù)定義求解.

解答 解:甲班同學中位數(shù)x=$\frac{1}{2}$(168+170)=169,
乙班同學中位數(shù)x=$\frac{1}{2}$(170+173)=171.5,
故選:D.

點評 莖葉圖的莖是高位,葉是低位,所以本題中“莖是百位和十位”,葉是個位,從圖中分析出參與運算的數(shù)據(jù),代入相應公式即可解答.從莖葉圖中提取數(shù)據(jù)是利用莖葉圖解決問題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.直線a、b是空間一組異面直線,長度確定的線段AB在直線a上滑動,長度確定的線段CD在直線b上滑動,△ACD的面積記為S,四面體ABCD的體積記為V,則( 。
A.S為常數(shù),V不確定B.S不確定,V為常數(shù)C.S、V均為常數(shù)D.S、V均不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知$\vec a$=(2,1),$\vec b$=(3,λ).若(2$\vec a-\vec b}$)∥$\vec b$,則λ的值為( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.3D.-1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知|${\overrightarrow{OA}}$|=1,|${\overrightarrow{OB}}$|=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$,則$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A=$\{y∈Z|y={log_2}x,\frac{1}{2}<x≤16\}$,B=$\{x|\frac{x+1}{x-2}≥0\}$,則集合A∩(∁RB)的真子集的個數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設0<m<$\frac{1}{2}$,若$\frac{1}{m}$+$\frac{2}{1-2m}$≥k2-2k恒成立,則k的取值范圍為( 。
A.[-2,0)∪(0,4]B.[-4,0)∪(0,2]C.[-4,2]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R.
(Ⅰ)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=7,sinB+sinC=$\frac{{13\sqrt{3}}}{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某貨輪在A處看燈塔S在北偏東30°方向,它向正北方向航行24海里到達B處,看燈塔S在北偏東75°方向,則此時貨輪看到燈塔S的距離為( 。┖@铮
A.$12\sqrt{3}$B.$12\sqrt{2}$C.$100\sqrt{3}$D.$100\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.函數(shù)f(x)=|x+1|-|2-x|.
(1)解不等式f(x)<0;
(2)若m,n∈R+,$\frac{4}{n+1}+\frac{1}{2m+1}=1$,求證:n+2m-f(x)>0恒成立.

查看答案和解析>>

同步練習冊答案