已知橢圓的焦距為2,點在橢圓上,
 求橢圓的標(biāo)準(zhǔn)方程;
 若過點的直線與中的橢圓交于不同的兩點、之間);
試求面積之比的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分16分)
平面直角坐標(biāo)系xOy中,已知圓M經(jīng)過F1(0,-c),F(xiàn)2(0,c),A(c,0)三點,其中c>0
(1)求圓M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓(其中)的左、右頂點分別為D、B,圓 M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè)。
求橢圓離心率的取值范圍;
若A、B、M、O、C、D(O為坐標(biāo)原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的離心率為,則雙曲線的漸近線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點及拋物線,若拋物線上點滿足,則
的最大值為
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,設(shè)點,以線段為直徑的圓經(jīng)過原點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線與軌跡交于兩點,點關(guān)于軸的對稱點為,試判斷直線是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知棱長為2的正方體中,的中點,P是平面內(nèi)的動點,且滿足條件,則動點P在平面內(nèi)形成的軌跡是    ▲  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、為焦點,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程是   ▲  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果以原點為圓心的圓經(jīng)過雙曲線-=1(a>0,b>0)的焦點,而且被該雙曲線的右準(zhǔn)線分成的弧長為2∶1的兩段圓弧,那么該雙曲線的離心率e等于
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案