【題目】如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點A.點P為北半圓。ɑPB)上的一點,過P作直線l的垂線,垂足為Q.計劃在△PAQ內(nèi)(圖中陰影部分)進(jìn)行綠化.設(shè)△PAQ的面積為S(單位:m2).
(1)設(shè)∠BOP=α(rad),將S表示為α的函數(shù);
(2)確定點P的位置,使綠化面積最大,并求出最大面積.

【答案】
(1)解:AQ=100sinα,PQ=100+100cosα,α∈(0,π),

則△PAQ的面積

=5000(sinα+sinαcosα),(0<α<π)


(2)解:S/=5000(cosα+cos2α﹣sin2α)

=5000(2cos2α+cosα﹣1)

=5000(2cosα﹣1)(cosα+1),

,cosα=﹣1(舍去),此時

當(dāng) 關(guān)于α為增函數(shù);

當(dāng) 關(guān)于α為減函數(shù).

∴當(dāng) 時, (m2),此時PQ=150m.

答:當(dāng)點P距公路邊界l為150m時,綠化面積最大,


【解析】(1)若∠BOP=α,則P點坐標(biāo)(x,y)中,x=AQ=100sinα,y=PQ=100+100cosα,α∈(0,π),根據(jù)三角形面積公式,我們易將S表示為α的函數(shù).(2)由(1)中結(jié)論,我們可利用導(dǎo)數(shù)法,判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最大值,即最大綠化面積.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批產(chǎn)品共有1 564,產(chǎn)品按出廠順序編號,號碼從11 564,檢測員要從中抽取15件產(chǎn)品作檢測,請給出一個系統(tǒng)抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), . 

(1)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍;

(2)是否存在整數(shù), ,使得的解集恰好是,若存在,求出, 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程: ,直線l的參數(shù)方程為
(1)若直線l與曲線C只有一個公共點,求實數(shù)a;
(2)若點P,Q分別為直線l與曲線C上的動點,若 ,求實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)為偶函數(shù).

(1)求的解析式;

(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖像時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

5

0

-5

0

1)求出實數(shù);

2)求出函數(shù)的解析式;

(3)將圖像上所有點向左平移個單位長度,得到圖像,求的圖像離原點最近的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,
(1)求函數(shù)的圖象在點 處的切線方程;
(2)當(dāng) 時,求證: ;
(3)若 對任意的 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,當(dāng) 時,函數(shù) 取得極值 .
(Ⅰ)求函數(shù) 的解析式;
(Ⅱ)若方程 有3個不等的實數(shù)解,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)沒有零點,求得取值范圍;

(3)若函數(shù), 的最小值為0,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案