【題目】某班進(jìn)行了次數(shù)學(xué)測(cè)試,其中甲、乙兩人的成績(jī)統(tǒng)計(jì)情況如莖葉圖所示:
(I)該班數(shù)學(xué)老師決定從甲、乙兩人中選派一人去參加數(shù)學(xué)比賽,你認(rèn)為誰(shuí)去更合適?并說(shuō)明理由;
(II)從甲的成績(jī)中人去兩次作進(jìn)一步的分析,在抽取的兩次成績(jī)中,求至少有一次成績(jī)?cè)?/span>之間的概率.
【答案】(Ⅰ) 見(jiàn)解析;(Ⅱ)
【解析】
(Ⅰ)對(duì)甲乙兩組數(shù)據(jù)分別計(jì)算它們的平均數(shù)和方差,然后做出判斷.
(Ⅱ)根據(jù)題意,列出所有的情況,選出符合要求的情況,根據(jù)古典概型公式,求出概率.
(Ⅰ)由莖葉圖得,
甲的平均分為 ,
乙的平均分為 ,
又,
,
,,故甲去更合適.
(Ⅱ)由題得,兩次成績(jī)一共有15種情況,
即:(86,88),(86,89),(86,90),(86,91),(86,96),(88,89),(88,90),(88,91),(88,96),(89,90),
(89,91),(89,96),(90,91),(90,96),(91,96),
其中至少有一次成績(jī)?cè)?/span>之間有9種情況,即:
(86,91),(86,96) ,(88,91),(88,96),(89,91),(89,96),(90,91),(90,96),(91,96),
故至少有一次成績(jī)?cè)?/span>之間的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn)不同于點(diǎn)),且,為棱上的點(diǎn),且.
求證:(1)平面平面;
(2)平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為全面推進(jìn)新課程改革,在高一年級(jí)開(kāi)設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動(dòng)課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為.
求該小組做了5次這種實(shí)驗(yàn)至少有2次成功的概率.
如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過(guò)5次,求該小組所做實(shí)驗(yàn)的次數(shù)的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓經(jīng)過(guò)坐標(biāo)原點(diǎn)和點(diǎn),且與直線相切, 從圓外一點(diǎn)向該圓引切線,為切點(diǎn),
(Ⅰ)求圓的方程;
(Ⅱ)已知點(diǎn),且, 試判斷點(diǎn)是否總在某一定直線上,若是,求出的方程;若不是,請(qǐng)說(shuō)明理由;
(Ⅲ)若(Ⅱ)中直線與軸的交點(diǎn)為,點(diǎn)是直線上兩動(dòng)點(diǎn),且以為直徑的圓過(guò)點(diǎn),圓是否過(guò)定點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知點(diǎn)A(2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為.記M的軌跡為曲線C.
(1)求C的方程,并說(shuō)明C是什么曲線;
(2)過(guò)坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在棱錐中,為矩形,面,
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com