5.已知i是虛數(shù)單位,若(a-2i)•i=b-i(a,b∈R),則a2+b2=( 。
A.0B.2C.5D.$\frac{5}{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵(a-2i)•i=b-i(a,b∈R),
∴ai+2=b-i,
∴2=b,a=-1,
則a2+b2=22+(-1)2=5.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.觀察如圖:

則第( 。┬械母鲾(shù)之和等于20112
A.2010B.2009C.1006D.1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},則集合B的子集的個數(shù)為( 。
A.4B.7C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={-4,2,-1,5},B={x|y=$\sqrt{x+2}$},則A∩B中元素的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個單位后的圖形關(guān)于原點(diǎn)對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),若點(diǎn)P是以F1F2為直徑的圓與C右支的一個交點(diǎn),PF1交C于另一點(diǎn)Q,且|PQ|=2|QF1|,則C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義域為R的偶函數(shù),且f(x+1)=$\frac{1}{f(x)}$,若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則(  )
A.a>b>cB.a>c>bC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上.滿足|BM|=2|AM|,直線0M的斜率為$\frac{\sqrt{5}}{10}$.
(1)求橢圓的離心率;
(2)設(shè)點(diǎn)C的坐標(biāo)為(-a,0),N為線段BC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對稱點(diǎn)的縱坐標(biāo)為$\frac{13}{2}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在銳角△ABC中,B=60°,|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為( 。
A.(0,12)B.[${-\frac{1}{4}$,12)C.(0,4]D.(0,2]

查看答案和解析>>

同步練習(xí)冊答案