15.觀察如圖:

則第(  )行的各數(shù)之和等于20112
A.2010B.2009C.1006D.1005

分析 由已知,得出第n行的第一個數(shù)是n,該行共有2n-1個數(shù)字,且構成以1為公差的等差數(shù)列,根據(jù)等差數(shù)列前n項和公式,得出關于n的方程求出行數(shù)n即可.

解答 解:此圖各行的數(shù)字排布規(guī)律是:第n行的第一個數(shù)是n,該行共有2n-1個數(shù)字,且構成以1為公差的等差數(shù)列.
所以第n行的各數(shù)之和為(2n-1)•n+$\frac{(2n-1)(2n-2)}{2}$=4n2-4n+1,
由4n2-4n+1=20112,得 4n(n-1)=20112-12=2012×2010=(2×1006)×(2×1005)=4×1006×1005
所以n=1006,
故選:C.

點評 本題考查等差數(shù)列前n項和公式的應用,得出圖中各行數(shù)的排布規(guī)律是關鍵.考查抽象概括、計算能力.本題解關于n的方程時,對因式進行分解、對應.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)為同一函數(shù)的是( 。
A.f(x)=x    g(x)=$\sqrt{{x}^{2}}$B.f(x)=x   g(x)=$\root{3}{{x}^{3}}$
C.f(x)=sinx     g(x)=sin(π+x)D.f(x)=x   g(x)=elnx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)和g(x)分別是R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=2ex,其中e為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)當x≥0時,分別出求曲線y=f(x)和y=g(x)切線斜率的最小值;
(Ⅲ)設a≤0,b≥1,證明:當x>0時,曲線y=$\frac{f(x)}{x}$在曲線y=ag(x)+2(1-a)和y=bg(x)+2(1-b)之間,且相互之間沒有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到如下折線圖.下面關于這兩位同學的數(shù)學成績的分析中,正確的共有( 。﹤.

①甲同學的成績折線圖具有較好的對稱性,與正態(tài)曲線相近,故而平均成績?yōu)?30分;
②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內(nèi);
③乙同學的數(shù)學成績與考試次號具有比較明顯的線性相關性,且為正相關;
④乙同學在這連續(xù)九次測驗中的最高分與最低分的差超過40分.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知e為自然對數(shù)的底數(shù),曲線y=aex+x在點(1,ae+1)處的切線與直線2ex-y-1=0平行,則實數(shù)a=(  )
A.$\frac{e-1}{e}$B.$\frac{2e-1}{e}$C.$\frac{e-1}{2e}$D.$\frac{2e-1}{2e}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)=ax3+3x,其圖象在點(1,f(1))處的切線l與直線x-3y-7=0垂直,則直線l與y軸的交點坐標為( 。
A.(0,1)B.(0,2)C.(0,3)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某賓館在裝修時,為了美觀,欲將客房的窗戶設計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計劃將矩形ABCD區(qū)域設計為可推拉的窗口.
(1)若窗口ABCD為正方形,且面積大于$\frac{1}{4}$m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=axlnx+be-x,曲線y=f(x)在(1,f(1))處的切線方程為y=(1+e-1)x-1-2e-1
(1)求a,b;
(2)求證:f(x)>-1-2e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知i是虛數(shù)單位,若(a-2i)•i=b-i(a,b∈R),則a2+b2=(  )
A.0B.2C.5D.$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案