【題目】BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點(diǎn)M,延長(zhǎng)AM交BC于點(diǎn)N,AF⊥BC于點(diǎn)F,AF與BD交于點(diǎn)E.
(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集(,)具有性質(zhì):對(duì)任意、(),與兩數(shù)中至少有一個(gè)屬于集合,現(xiàn)給出以下四個(gè)命題:①數(shù)集具有性質(zhì);②數(shù)集具有性質(zhì);③若數(shù)集具有性質(zhì),則;④若數(shù)集()具有性質(zhì),則;其中真命題有________(填寫序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1、F2,且|F1F2|=2,點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A、B兩點(diǎn),且△AF2B的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側(cè)面SAD是邊長(zhǎng)為4的等邊三角形,底面ABCD為菱形,側(cè)面SAD與底面ABCD所成的二面角為120°.
(1)求點(diǎn)S到平面ABCD的距離;
(2)若E為SC的中點(diǎn),求二面角A﹣DE﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集其中,,2,,n,,若對(duì)任意的2,,都存在,,使得下列三組向量中恰有一組共線:
向量與向量;
向量與向量;
向量與向量,則稱X具有性質(zhì)P,例如2,具有性質(zhì)P.
若3,具有性質(zhì)P,則x的取值為______
若數(shù)集3,,具有性質(zhì)P,則的最大值與最小值之積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行隨機(jī)抽樣檢測(cè),已知從三個(gè)地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測(cè)人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機(jī)抽取6件樣品進(jìn)行檢測(cè).
(1)求這6件樣品中,來(lái)自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往另一機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件樣品來(lái)自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長(zhǎng)為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體挖去部分后的三視圖如圖所示,若其正視圖和側(cè)視圖都是由三個(gè)邊長(zhǎng)為2的正三角形組成,則該幾何體的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣ x2﹣aln(x+1)(a>0),g(x)=ex﹣x﹣1,曲線y=f(x)與y=g(x)在原點(diǎn)處的公共的切線.
(1)若x=0為函數(shù)f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若x≥0,g(x)≥f(x)+ x2 , 求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com