19.函數(shù)y=$\frac{sinx}{|tanx|}$(0<x<π,x≠$\frac{π}{2}$)的大致圖象是(  )
A.B.
C.D.

分析 根據(jù)函數(shù)的定義域,在區(qū)間(0,$\frac{π}{2}$)上,y=cosx∈(0,1),且函數(shù)y單調(diào)遞減;在區(qū)間($\frac{π}{2}$,π)上,y=-cosx∈(0,1),且函數(shù)y單調(diào)遞增,結(jié)合所給的選項(xiàng),得出結(jié)論.

解答 解:由于函數(shù)y=$\frac{sinx}{|tanx|}$ (0<x<π,x≠$\frac{π}{2}$),∴tanx≠0,且sinx≠0,
∴函數(shù)的定義域?yàn)閧x|x≠kπ,且x≠kπ+$\frac{π}{2}$,k∈Z}.
在區(qū)間(0,$\frac{π}{2}$)上,y=cosx∈(0,1),且函數(shù)y單調(diào)遞減;
在區(qū)間($\frac{π}{2}$,π)上,y=-cosx∈(0,1),且函數(shù)y單調(diào)遞增,
結(jié)合所給的選項(xiàng),
故選:B.

點(diǎn)評(píng) 本題主要考查帶有絕對(duì)值的函數(shù),函數(shù)的定義域和值域,函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1,CC1,BC的中點(diǎn),AE⊥A1B1,D為棱A1B1上的點(diǎn).
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(n+1)=$\frac{2f(n)}{f(n)+2}$,f(1)=1(n∈N*),猜想f(n)的表達(dá)式為f(n)=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.曲線y=xsinx在點(diǎn)P(π,0)處的切線方程是( 。
A.y=-πx+π2B.y=πx+π2C.y=-πx-π2D.y=πx-π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖所示的分?jǐn)?shù)三角形,稱為“萊布尼茨三角形”.這個(gè)三角形的規(guī)律是:各行中的每一個(gè)數(shù),都等于后面一行中與它相鄰的兩個(gè)數(shù)之和(例如第4行第2個(gè)數(shù)$\frac{1}{12}$等于第5行中的第2個(gè)數(shù)$\frac{1}{20}$與第3個(gè)數(shù)$\frac{1}{30}$之和).則
在“萊布尼茨三角形”中,第10行從左到右第2個(gè)數(shù)到第8個(gè)數(shù)中各數(shù)的倒數(shù)之和為( 。
A.5010B.5020C.10120D.10130

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωx•sinωx,其中ω>0,若f(x)相鄰兩條對(duì)稱軸間的距離不小于$\frac{π}{2}$
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=$\sqrt{3}$,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求sinB•sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC 中,角 A、B、C 所對(duì)的邊分別為a、b、c,且滿足c=2$\sqrt{3}$,c cos B+( b-2a )cos C=0.
(1)求角 C 的大小;
(2)求△ABC 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)P(2,5)關(guān)于直線x+y=1的對(duì)稱點(diǎn)的坐標(biāo)是( 。
A.(-5,-2)B.(-4,-1)C.(-6,-3)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知兩點(diǎn)F1(-1,0),F(xiàn)(1,0),且|F1F2|是|PF1|與|PF2|的等差數(shù)列中項(xiàng),則動(dòng)點(diǎn)P所形成的軌跡的離心率是(  )
A.$\frac{\sqrt{7}}{4}$B.2C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案