計(jì)算(Ⅰ)(2
7
9
)
1
2
+0.5-2-3×π0+(
8
27
)-
2
3

(Ⅱ)log3
27
+lg25+lg4+7log72+{(-9.8)0
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專(zhuān)題:計(jì)算題
分析:(Ⅰ)化帶分?jǐn)?shù)為假分?jǐn)?shù),化負(fù)指數(shù)為正指數(shù),然后利用有理指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)求值;
(Ⅱ)直接利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值.
解答: 解:(Ⅰ)(2
7
9
)
1
2
+0.5-2-3×π0+(
8
27
)-
2
3

=(
25
9
)
1
2
+(
1
2
)-2-3+(
8
27
)-
2
3

=
5
3
+4-3+
9
4

=
59
12
;
(Ⅱ)log3
27
+lg25+lg4+7log72+(-9.8)0
=log33
3
2
+lg100+2+1

=
3
2
+2+3

=
13
2
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了有理指數(shù)冪的化簡(jiǎn)與求值,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:方程x2+2ax+2-a=0有實(shí)數(shù)解.命題q:?x∈[1,2],a≥x2,若“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:方程x3-3x+1=0的根一個(gè)在(-2,-1)內(nèi),一個(gè)在(0,1)內(nèi),一個(gè)在(1,2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了提高校園景觀,某校改造花圃用地平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,花圃規(guī)劃用地區(qū)域近似地為半徑是R的圓面.該圓面的內(nèi)接四邊形ABCD是原花圃用地,測(cè)量可知邊界AB=AD=4米,BC=6米,CD=2米.
(Ⅰ)請(qǐng)計(jì)算原花圃用地ABCD的面積及圓面的半徑R的值;
(Ⅱ)因地理?xiàng)l件的限制,邊界AD,CD不能變更,而邊界AB,BC可以調(diào)整,為提高花圃改造用地的利用率,請(qǐng)?jiān)趫A弧ABC上設(shè)計(jì)一點(diǎn)P,使得花圃改造的新用地APCD的面積最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3sinx,
3
)
,
b
=(cosx,cos2x-
1
2
),函數(shù)f(x)=
a
b
,
(1)求函數(shù)f(x)的周期;
(2)寫(xiě)出函數(shù)f(x)的遞減區(qū)間;
(3)求f(x)在[0,
π
2
]上的最值并求出相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-2x+1在[-1,2]上的最大值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
2
3
,a2=1,3an=4n-1-an-2(n≥3).
(1)求a3的值;
(2)證明:數(shù)列{an-an-1}(n≥2)是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全集U=R,集合A={x||x-1|>1},集合B={x|
x+1
x-2
>0}
(Ⅰ)求A和B;
(Ⅱ)求A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖△A′B′C′是水平放置的△ABC的直觀圖,則在△ABC的三邊及中線AD中,最長(zhǎng)的線段是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案