16.在正四棱錐V-ABCD中,底面正方形ABCD的邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2,則異面直線VA與BD所成角的大小為$\frac{π}{2}$.

分析 連接AC,交BD于O,連接VO,先在正方形ABCD中證出對(duì)角線AC、BD互相垂直,再在三角形VBD中,根據(jù)VB=VD和O為BD中點(diǎn),證出VO、BD互相垂直,最后根據(jù)直線與平面垂直的判定理證出BD⊥平面ACV,從而B(niǎo)D⊥VA,即異面直線VA與BD所成角大小.

解答 解:如圖所示,連接AC,交BD于O,連接VO
∵四邊形ABCD是正方形,
∴AC⊥BD,O為BD的中點(diǎn)
又∵正四棱錐V-ABCD中,VB=VD
∴VO⊥BD
∵AC∩VO=O,AC、VO?平面ACV
∴BD⊥平面ACV
∵VA?平面ACV
∴BD⊥VA;
即異面直線VA與BD所成角等于$\frac{π}{2}$..
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題以求正四棱錐中異面直線所成角為載體,著重考查了直線與平面垂直的判定與性質(zhì),以及異面垂直的概念,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法中正確的是(  )
A.數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4
B.一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C.數(shù)據(jù)3,5,7,9的標(biāo)準(zhǔn)差是數(shù)據(jù)6、10、14、18的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=5,S5=3S3-2.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如果函數(shù)y=x2+(1-a)x+2在區(qū)間(-∞,3]上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.a≤7B.a≤-5C.a≥-5D.a≥7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,矩形OABC′是水平放置的一個(gè)平面圖形的直觀圖,其中OA′=6,OC′=2,則原圖形OABC的面積為( 。
A.24$\sqrt{2}$B.12$\sqrt{2}$C.48$\sqrt{2}$D.20$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知等差數(shù)列{an}的公差不為零,a1=2,且a1,a3,a9成等比數(shù)列,則a1+a4+a7+…+a3n-2═3n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在(x-$\frac{1}{{x}^{4}}$)10的展開(kāi)式中,常數(shù)項(xiàng)為( 。
A.-90B.90C.-45D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}滿足a3=6,a4+a6=20.
(Ⅰ)求通項(xiàng)an
(II)設(shè)bn=$\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.有3名男生,4名女生,選其中5人排成一行,共有2520種不同的排法.

查看答案和解析>>

同步練習(xí)冊(cè)答案