2.如圖,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=$\sqrt{3}$CD=3.將△ABC沿BC的邊翻折,設點A在平面BCD上的射影為點M,若點M在△BCD內(nèi)部(含邊界),則點M的軌跡的最大長度等于$\frac{\sqrt{3}}{2}$;在翻折過程中,當點M位于線段BD上時,直線AB和CD所成的角的余弦值等于$\frac{\sqrt{6}}{6}$.

分析 點A的射影M的軌跡為CD的中位線,可得其長度;當點M位于線段BD上時,取BC中點為N,AC中點為P,可得∠MNP或其補角即為直線AB和CD所成的角,由已知數(shù)據(jù)和余弦定理可得.

解答 解:由題意可得點A的射影M的軌跡為CD的中位線,其長度為$\frac{1}{2}$CD=$\frac{\sqrt{3}}{2}$;
當點M位于線段BD上時,AM⊥平面ACD,取BC中點為N,AC中點為P,
∴∠MNP或其補角即為直線AB和CD所成的角,
則由中位線可得MN=$\frac{1}{2}$CD=$\frac{\sqrt{3}}{2}$,PC=$\frac{1}{2}$AB=$\frac{3\sqrt{2}}{4}$,
又MP為RT△AMC斜邊AC的中線,故MP=$\frac{1}{2}$AC=$\frac{3\sqrt{2}}{4}$,
∴在△MNP中,由余弦定理可得cos∠MNP=$\frac{(\frac{\sqrt{3}}{2})^{2}+(\frac{3\sqrt{2}}{4})^{2}-(\frac{3\sqrt{2}}{4})^{2}}{2×\frac{\sqrt{3}}{2}×\frac{3\sqrt{2}}{4}}$=$\frac{\sqrt{6}}{6}$,
故答案為:$\frac{\sqrt{3}}{2}$;$\frac{\sqrt{6}}{6}$.

點評 本題考查異面直線及其所成的角,理清翻轉(zhuǎn)前后的數(shù)值的關系是解決問題的關鍵,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知an是二項式(2+$\sqrt{x}$)n(其中n=2,3,4,…)的展開式中x的二項式系數(shù),若數(shù)列{bn}滿足b1=160,bn=$\frac{2{a}_{n+2}{a}_{n+3}}{(n+2){a}_{n+1}}$(n≥2,n∈N*),則數(shù)列{bn}的最小項是(  )
A.40B.10C.160D.320

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若數(shù)列{an}滿足:a1=0,且an=an-1+2n-1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項為第6項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知甲袋中裝有大小、形狀、質(zhì)地、相同的3個白球和2個紅球,乙袋中裝有1個白球和4個紅球,現(xiàn)從甲、乙兩袋中各摸一個球,試求:
(1)兩球都是紅球的概率;
(2)恰有一個是紅球的概率;
(3)至少有一個是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在(1+2x-$\frac{1}{{x}^{2016}}$)10的展開式中,x2項的系數(shù)為180.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在平面直角坐標系xOy中,已知△ABC的頂點B(-5,0)和C(5,0),頂點A在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上,則$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xOy中,與雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$有相同漸近線,且一條準線方程為$y=\frac{{4\sqrt{2}}}{3}$的雙曲線的標準方程為$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{10}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知△ABC中的內(nèi)角A,B,C所對的邊分別是a,b,c,若a=1,C-B=$\frac{π}{2}$,則c-b的取值范圍是($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的離心率為$\sqrt{2}$,則其漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

同步練習冊答案