14.在平面直角坐標(biāo)系xOy中,與雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$有相同漸近線,且一條準線方程為$y=\frac{{4\sqrt{2}}}{3}$的雙曲線的標(biāo)準方程為$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{10}$=1.

分析 求得已知雙曲線的漸近線方程,設(shè)出所求雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),求出漸近線方程和準線方程,由題意可得$\frac{a}$=$\frac{2\sqrt{5}}{5}$,$\frac{{a}^{2}}{c}$=$\frac{4\sqrt{2}}{3}$,結(jié)合a,b,c的關(guān)系,解方程可得a,b,進而得到雙曲線的方程.

解答 解:雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$的漸近線為y=±$\frac{2\sqrt{5}}{5}$x,
設(shè)所求雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a,b>0),
漸近線方程為y=±$\frac{a}$x,準線方程為y=±$\frac{{a}^{2}}{c}$,
由題意可得$\frac{a}$=$\frac{2\sqrt{5}}{5}$,$\frac{{a}^{2}}{c}$=$\frac{4\sqrt{2}}{3}$,
又a2+b2=c2,解得a=2$\sqrt{2}$,b=$\sqrt{10}$,
即有所求雙曲線的方程為$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{10}$=1.
故答案為:$\frac{{y}^{2}}{8}$-$\frac{{x}^{2}}{10}$=1.

點評 本題考查雙曲線的方程的求法,注意運用待定系數(shù)法,考查雙曲線的漸近線方程和準線方程的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)的定義域是R,對任意實數(shù)x,滿足f(x+2)=-f(x),求證:函數(shù)f(x)是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在等比數(shù)列{an}中,公比q>0,a1=3,S3=63,則公比q=4,S5=1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=$\sqrt{3}$CD=3.將△ABC沿BC的邊翻折,設(shè)點A在平面BCD上的射影為點M,若點M在△BCD內(nèi)部(含邊界),則點M的軌跡的最大長度等于$\frac{\sqrt{3}}{2}$;在翻折過程中,當(dāng)點M位于線段BD上時,直線AB和CD所成的角的余弦值等于$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為點A,直線l:y=x+a與其兩條漸近線分別交于點B、C,且$\overrightarrow{OC}$+2$\overrightarrow{OA}$=3$\overrightarrow{OB}$,O為坐標(biāo)原點,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A,B為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上兩點,O為坐標(biāo)原點,若△OAB是邊長為c的等邊三角形,且c2=a2+b2,則雙曲線C的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知離心率為2的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實軸長為8,則該雙曲線的漸近線方程為(  )
A.y=±$\sqrt{3}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{3}}{3}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若雙曲線mx2-y2=1經(jīng)過拋物線y2=2x的焦點,則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ (a>0,b>0)的左焦點,定點G(0,c),若雙曲線上存在一點P滿足|PF|=|PG|,則雙曲線的離心率的取值范圍是( 。
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$)C.[$\sqrt{3}$,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊答案