7.已知一直線被兩平行線3x+4y-7=0與3x+4y+8=0所截線段長為3,且該直線過點(diǎn)(2,3),求該直線方程.

分析 根據(jù)平行線減的距離等于3可知所求直線與已知直線垂直,設(shè)所求直線4x-3y+C=0,把點(diǎn)(2,3)代入直線方程求出C,得出直線方程.

解答 解:兩平行線3x+4y-7=0與3x+4y+8=0之間的距離d=$\frac{|-7-8|}{\sqrt{{3}^{2}+{4}^{2}}}$=3.∴所求直線與3x+4y-7=0垂直.
設(shè)所求直線4x-3y+C=0,把點(diǎn)(2,3)代入直線方程得C=1.
∴所求直線方程為4x-3y+1=0.

點(diǎn)評 本題考查了直線的位置關(guān)系與斜率的關(guān)系,平行線間的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.作出函數(shù)y=($\frac{1}{3}$)|x-1|和y=-2cosπx的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.己知當(dāng)且僅當(dāng)a∈(m,n)時,$\frac{2-ax+{x}^{2}}{1-x+{x}^{2}}$<3對x∈R恒成立,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.畫y=$\frac{3x-1}{x+2}$,通過圖象,說出它的單調(diào)區(qū)間、對稱中心、對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式恒成立的是( 。
A.tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$B.$\frac{1+cos2α}{2}$=cos2α
C.$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=tanαD.±$\sqrt{\frac{1-cosα}{1+cosα}}$=tan$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)f(x)與g(x)是相同函數(shù)的是(  )
A.f(x)=$\frac{x-1}{{x}^{2}-1}$,g(x)=$\frac{1}{1+x}$B.f(x)=($\sqrt{x}$)2,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=$\root{3}{{x}^{4}-{x}^{3}}$,g(x)=x$\root{3}{x-1}$D.f(x)=1,g(x)=sin(arcsinx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤1}\\{2x-y≥0}\end{array}\right.$,則z=x+y的最大值是( 。
A.$\frac{3\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x-y≤0}\\{x+y-4<0}\\{x-1≥0}\end{array}\right.$,則使等式(t+2)x+(t-1)y+2t+4=0成立的t取值范圍為(  )
A.[-$\frac{5}{4}$,-$\frac{1}{2}$)B.(-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞)C.[-$\frac{5}{4}$,1)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

同步練習(xí)冊答案