分析 根據(jù)平行線減的距離等于3可知所求直線與已知直線垂直,設(shè)所求直線4x-3y+C=0,把點(diǎn)(2,3)代入直線方程求出C,得出直線方程.
解答 解:兩平行線3x+4y-7=0與3x+4y+8=0之間的距離d=$\frac{|-7-8|}{\sqrt{{3}^{2}+{4}^{2}}}$=3.∴所求直線與3x+4y-7=0垂直.
設(shè)所求直線4x-3y+C=0,把點(diǎn)(2,3)代入直線方程得C=1.
∴所求直線方程為4x-3y+1=0.
點(diǎn)評 本題考查了直線的位置關(guān)系與斜率的關(guān)系,平行線間的距離公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$ | B. | $\frac{1+cos2α}{2}$=cos2α | ||
C. | $\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=tanα | D. | ±$\sqrt{\frac{1-cosα}{1+cosα}}$=tan$\frac{α}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{x-1}{{x}^{2}-1}$,g(x)=$\frac{1}{1+x}$ | B. | f(x)=($\sqrt{x}$)2,g(x)=$\sqrt{{x}^{2}}$ | ||
C. | f(x)=$\root{3}{{x}^{4}-{x}^{3}}$,g(x)=x$\root{3}{x-1}$ | D. | f(x)=1,g(x)=sin(arcsinx) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{5}{4}$,-$\frac{1}{2}$) | B. | (-∞,-$\frac{5}{4}$]∪(-$\frac{1}{2}$,+∞) | C. | [-$\frac{5}{4}$,1) | D. | [-$\frac{1}{2}$,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com